簡易檢索 / 詳目顯示

研究生: 林武璇
Lin, Wu-Hsuan
論文名稱: 應用於第五代行動通訊之28 GHz相移器與升頻混頻器研究
Research on 28 GHz Phase Shifters and Up-Conversion Mixer for Fifth Generation Wireless Communication System
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 177
中文關鍵詞: Ka頻帶第五代行動通訊開關式相移器次諧波混頻器
英文關鍵詞: Ka-band, 5G, switch type phase shifter, sub-harmonic mixer
DOI URL: https://doi.org/10.6345/NTNU202202537
論文種類: 學術論文
相關次數: 點閱:108下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究領域為相移器與升頻混頻器。近年來高速通訊蓬勃發展,從過去的語音傳輸,發展至現今影片與龐大資料的傳輸需要更高無線通訊的頻段,以滿足大量的資料傳輸需求,第五代行動通訊為近日研究主流,28 GHz為可能之發展頻段,故本文所設計之電路將以此頻段作為研究重點。
    本論文前半段介紹各類相移器,並且針對開關式相移器進行分析,接著說明兩顆五位元開關式相移器之設計與實現。第一顆相移器,其中四個位元採用T橋式相移器,採用高通與低通電路的組合。經過重新設計後的版本,操作頻率為26 GHz至31 GHz時相位誤差均方根小於4.39°以及振幅誤差均方根值小於0.79 dB,在中心頻率28 GHz時,擁有2.72°相位誤差均方根值以及0.61 dB振幅誤差均方根值。
    第二顆晶片也是五位元開關式相移器。為了達到增加頻寬的目的,相較於第一版本的90°相移器採用T橋式架構,此電路採用反射式相移器架構,其餘四個位元和第一顆相移器架構相同。操作頻率為26 GHz至31 GHz時相位誤差均方根小於4.06°以及振幅誤差均方根值小於0.88 dB,在中心頻率28 GHz時,擁有2.56°相位誤差均方根值以及0.83 dB的振幅誤差均方根值。
    本論文後半段介紹第三個電路,也是最後一顆晶片,升頻混頻器,此電路採用被動式架構以及次諧波混頻架構,以達到高頻寬、低功耗以及高隔離度。中心頻率28 GHz,且LO驅動功率為2.5 dBm時,在24 GHz至38 GHz擁有 dB的轉換增益以及小於70 dB的2LO to RF的隔離度,在LO驅動功率為9 dBm,RF頻率為28 GHz下擁有-21.2 dBm的轉換增益。

    The main research field of this thesis is based on phase shifter and up-converter mixer. From telecommunication to big data, higher frequency spectrum is needed for the large amount of data. Therefore in order to satisfy tremendous data transmission these days, fifth generation wireless communication system has been proposed and populated. We focus our research on 28 GHz, the potential spectrum in 5G system, which is used among three circuits throughout this thesis.
    In the first half of this thesis, we introduce different types of phase shifter, and analyze switch type phase shifter used in this thesis, then express the design and implementation on two circuits, phase shifters. The first circuit is five bits switch type phase shifter, four in five bits used bridged T-type and used high-pass and low-pass to fulfill the circuit. After modifying the circuit, frequency operated from 26 GHz to 31 GHz has lower than 4.39° RMS phase error and 0.79 dB RMS amplitude error. The central frequency 28 GHz, has 2.72° RMS phase error and 0.61 dB RMS amplitude error.
    The second circuit is also a five bits switch type phase shifter. To increase bandwidth, reflection type architecture is substituted for bridged T-type in 90° phase shifter and the other four bits have the same architecture as the first chip. Frequency operated from 26 GHz to 31 GHz was observed to have lower than 4.06° RMS phase error and 0.88 dB RMS amplitude error. The central frequency 28 GHz, has 2.56° RMS phase error and 0.83 dB RMS amplitude error.
    In second half of this thesis, the third and also the final chip circuit is introduced. Passive and sub-harmonic technique are used in up-converter mixer to achieve broad bandwidth, low dc consumption and high isolation. The conversion gain is dB at LO drive power is 2.5 dBm and lower than 70 dB 2LO to RF isolation when the frequency is ranged from 24 GHz to 38 GHz. When LO power is 9 dBm, RF frequency is 28 GHz is -21.2 dBm.

    摘 要 i ABSTRACT iii 誌 謝 v 目 錄 vi 圖 目 錄 x 表 目 錄 xx 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.2.1 相移器文獻探討 2 1.2.2 混頻器文獻探討 7 1.3 研究成果 9 第二章 相移器介紹 11 2.1 簡介 11 2.2 相移器參數介紹 11 2.2.1 相位差 (Phase Difference) 11 2.2.2 插入損耗、振幅誤差 (Insertion Loss, Amp. Error) 11 2.2.3 RMS 相位差 (RMS Phase Error) 12 2.2.4 RMS振幅誤差 (RMS Amplitude Error) 12 2.2.5 1dB增益壓縮點 ("P1dB" ) 12 2.2.6 反射係數 (Return Loss) 13 2.3 相移器電路介紹 13 2.3.1 傳輸線式相移器 13 2.3.2 開關式相移器 15 2.3.3 反射式相移器 20 2.3.4 向量和式相移器 21 第三章 Ka頻帶開關式相移器設計 23 3.1 電路架構 23 3.1.1 理想LC相移器模擬 23 3.1.2 電晶體尺寸設計 31 3.1.3各相位模擬 40 3.2 Ka頻段五位元相移器模擬 47 3.3 Ka頻段五位元相移器量測 53 3.4 問題與討論 61 3.4.1 90°相移器短路修正 61 3.5 Ka頻段五位元相移器重新設計版本 63 3.6 Ka頻段五位元相移器重新設計版本量測 64 3.7 總結 73 第四章 Ka頻帶開關式相移器設計使用反射式相移器 77 4.1 電路架構 77 4.2 90°開關式相移器使用反射式相移器設計 77 4.2.1 理想反射負載模擬 78 4.2.2 電晶體尺寸設計 80 4.2.3 反射負載加入電阻 82 4.2.4 反射負載考慮電容非理想效應 83 4.2.5 反射負載考慮電容非理想效應加入電阻 85 4.2.6 90°相移器模擬 86 4.3 Ka頻帶五位元開關式相移器模擬 88 4.4 Ka頻帶五位元開關式相移器量測 89 4.5 問題與討論 97 4.5.1 量測與模擬 97 4.5.2 電路靈敏度測試 97 4.5.3 反射式相移器架構與T橋式相移器模擬比較 105 4.5.4 180°相移器以及45°相移器相位飄移問題 108 4.6 總結 108 第五章 Ka頻帶次諧波混頻器設計 113 5.1 混頻器簡介與架構比較 113 5.1.1 混頻器簡介 113 5.1.2 混頻器架構比較 114 5.2 混頻器參數設計 117 5.2.1 轉換增益 (Conversion Gain) 117 5.2.2 雜訊指數 (Noise Figure) 117 5.2.3 隔離度 (Isolation) 117 5.2.4 線性度 (Linearity) 118 5.3 Ka頻帶混頻器設計 118 5.3.1 電晶體尺寸選擇 118 5.3.2 加入閘極端偏壓之電晶體尺寸選擇 127 5.3.3 Quadrature Coupler、Marchand Balun 設計 136 5.3.4 RF端匹電感設計 148 5.4 Ka頻帶次諧波混頻器模擬結果 150 5.5 Ka頻帶次諧波混頻器量測結果 154 5.6 總結 167 第六章 結論 171 參 考 資 料 173 自傳 177 學術成就 177

    [1] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE. Boston : Prenticee Hall, 2010.
    [2] J. E. Smee, 5G and Wireless Broadband Evolution pp. 2–16, 2014 [Online]. Available: http://johannesbergsummit.com/wp-content/uploads/sites/6/2013/11/Smee-Qualcomm_5G_Johannesburg_2014.pdf
    [3] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Zhengliang Huang, and Faxin Yu, “Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter,” in IEEE Microwave and Wireless Components Letters., vol. 27, no. 5, pp. 482-484, May. 2017.
    [4] Gyeong-Seop Shin, Jae-Sun Kim, Hyun-Myung Oh, Sunkyu Choi, Chul Woo Byeon, Ju Ho Son, Jeong Ho Lee, and Choul-Young Kim, “Low Insertion Loss, Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications,” in IEEE Microwave and Wireless Components Letters., vol. 26, no. 1, pp. 37-39, Jan. 2016.
    [5] J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” in IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, Mar. 2011.
    [6] H. Alsuraisry, J. H. Cheng, H. W. Wang, J. Y. Zhong, J. H. Tsai, and T. W. Huang, “A X-band digitally controlled 5-bit phase shifter in 0.18-μm CMOS technology,” 2015 Asia-Pacific Microwave Conference (APMC)., Nanjing, China, Dec. 2015, pp. 1-3.
    [7] W. J. Tseng, C. S. Lin, Z. M. Tsai, and H. Wang, “A miniature switching phase shifter in 0.18-μm CMOS,” 2009 Asia Pacific Microwave Conference (APMC)., Singapore, Dec. 2009, pp. 2132-2135.
    [8] J. H. Tsai, C. K. Liu, and J. Y. Lin, “A 12 GHz 6-bit switch-type phase shifter MMIC,” 2014 44th European Microwave Conference., Rome, Italy, Oct. 2014, pp. 1916-1919.
    [9] H. Gao et al., “60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals,” in Electronics Letters., vol. 52, no. 19, pp. 1611-1613, Sep. 2016.
    [10] D. Huang, L. Zhang, D. Li, L. Zhang, and Y. Wang, “A 60GHz 360° digitally controlled phase shifter with 6-bit resolution and 2.3° maximal rms phase error in 65nm CMOS technology,” 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)., Sendai, Japan. 2015, pp. 31-33.
    [11] Chunyuan Zhou, He Qian, and Zhiping Yu, “A Lumped Elements Varactor-Loaded Transmission-Line Phase Shifter at 60GHz,” IEEE International Conference on Solid-State and Integrated Circuits Technology., Shanghai, China, Dec. 2010, pp. 1-4.
    [12] L.-Y. Huang, Y.-T. Lin, and C.-N. Kuo, “A 38 GHz Low-Loss Reflection-Type Phase Shifter,” 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix, AZ, Jan. 2017, pp. 54-56.
    [13] N. Mazor, O. Katz, R. Ben-Yishay, A. Valdes Garcia, and D. Elad, “SiGE based Ka-band reflection type phase shifter for integrated phased array transceivers,” 2016 IEEE MTT-S International Microwave Symposium (IMS)., San Francisco, CA, May. 2016, pp. 1-4.
    [14] Jen-Chieh Wu, Chia-Chan Chang, Sheng-Fuh Chang, and Ting-Yueh Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation,” 2008 IEEE Radio Frequency Integrated Circuits Symposium., Atlanta, GA, Apr. 2008, pp. 365-368.
    [15] Mohammad-Mahdi Mohsenpour, and Carlos E. Saavedra, “Variable ?"360" ?^"°" Vector-Sum Phase Shifter With Coarse and Fine Vector Scaling,” IEEE Transaction on Microwave Theory and Techniques., vol. 64, no. 7, pp. 2113-2120, Jul. 2016.
    [16] S. P. Sah, and D. Heo, “An ultra-wideband 15–35 GHz phase-shifter for beamforming applications,” 2013 European Microwave Integrated Circuit Conference., Nuremberg, Germany, Oct. 2013, pp. 264-267.
    [17] Chung-Han Wu, Wei-Tsung Li, Jeng-Han Tsai, and Tian-Wei Huang, “Design of a K-band Low Insertion Loss Variation Phase Shifter Using 0.18-μm CMOS Process,” IEEE Asia-Pacific Microwave Conference., Yokohama, Japan, Dec. 2010, pp.1735-1738.
    [18] F. Meng, K. Ma, K. S. Yeo, and S. Xu, “A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems., vol. 24, no. 5, pp. 1917-1925, May 2016.
    [19] K. W. Han, H. Cui, X. W. Sun, and J. Zhang, “The design of a 60 GHz low loss hybrid phase shifter with 360 degree phase shift.,” 2014 14th International Symposium on Communications and Information Technologies (ISCIT)., Incheon, 2014, pp. 551-554.
    [20] Jung-Hau Chen, Che-Chung Kuo, Yue-Ming Hsin, and Huei Wang, “A 15-50 GHz broadband resistive FET ring mixer using 0.18-μm CMOS technology,” 2010 IEEE MTT-S I International Microwave Symposium., Anaheim, CA, Jul. 2010, pp. 784-787.
    [21] Y.-S. Won, C.-H. Kim, and S.-G. Lee, “A 24 GHz Highly Linear Up-Conversion Mixer in CMOS 0.13 μm Technology,” in IEEE Microwave and Wireless Components Letters, vol. 25, no. 6, pp. 400-402, Jun. 2015.
    [22] A. Verma, K. K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications,” in IEEE Transactions on Microwave Theory and Techniques., vol. 54, no. 8, pp. 3295-3300, Aug. 2006.
    [23] C. Huynh, J. Lee, and C. Nguyen, “A K-band SiGe BiCMOS fully integrated up-conversion mixer,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea, Nov. 2013, pp. 185-187.
    [24] I. C. H. Lai, and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption,” 2006 Proceedings of the 32nd European Solid-State Circuits Conference., Montreux, Switzerland, Sep. 2006, pp. 400-403.
    [25] C. S. Lin, P. S. Wu, H. Y. Chang, and H. Wang, “A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” in IEEE Microwave and Wireless Components Letters., vol. 16, no. 5, pp. 293-295, May 2006.
    [26] M. J. Zeng, and R. M. Weng, “A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems,” 2012 IEEE International Symposium on Circuits and Systems., Seoul, Korea, May. 2012, pp. 1927-1930.
    [27] H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14-30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141-1143, Jul. 2014.
    [28] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd Ed. New Jersey : Prenticee Hall, 1997.
    [29] David M. Pozar, Microwave Engineering, 4th Ed. Wiley, 2011.
    [30] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Education, 2001.
    [31] C. K. Alexander, and M. N. O. Sadiku, Fundamentals of Electric Circuits 4th Ed. McGraw-Hill Education, 2009.
    [32] 俞皓鈞,Ku頻帶相移器與功率放大器之設計,元智大學通訊工程研究所碩士論文,民國99年。
    [33] 張瑞安,X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現,國立臺灣師範大學應用電子科技研究所碩士論文,民國103年。
    [34] 黃絹容,Ka頻帶升頻混頻器與I/Q調變器設計與實現,國立臺灣師範大學電工程研究所碩士論文,民國105年。
    [35] 彭朋瑞,應用於微波與毫米波之相移器的研製,國立台灣大學電機資訊學院電信工程學研究所碩士論文,民國99年。

    下載圖示
    QR CODE