簡易檢索 / 詳目顯示

研究生: 侯亭昀
論文名稱: 基於眼動分析之程式理解與除錯認知歷程探究
指導教授: 林育慈
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 眼動分析認知歷程程式設計程式除錯
論文種類: 學術論文
相關次數: 點閱:150下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 程式設計是電腦科學領域中關鍵的基礎技能,因此如何提升程式設計的學習成效,是資訊教育持續探究的議題。現有研究多以面訪、放聲思考和紙筆測驗觀察受試者的外顯行為以推知其認知,但這些方法對於受試者內在認知的探討較缺乏客觀證據。
    本研究以受試者的眼動來了解其在程式理解以及除錯時的認知歷程。共三十八位大學資工科系學生參與實驗,實驗內容為四題30行內的C語言程式,理解與除錯各兩題,實驗藉由眼動儀記錄參與者的眼球活動情形,得知程式設計者在進行程式理解與除錯任務時在程式碼各區域注意力的狀況,並以訪談與問卷做為輔助,以眼動資料進行序列分析,推測程式設計者的行為層面。
    研究結果發現低成就者可能因工作記憶空間較小,導致計算與記錄行為頻繁,對於程式知識的掌握度也較低;高成就者的理解/除錯方式則較具邏輯性,程式知識較豐富也較能實際運用;男性較有記錄數值的習慣;女性在遞迴除錯時較須要進行計算,其心算能力、工作記憶空間與問題解決能力可能略為不足。
    本研究的發現可提供改進程式設計教學與研究之參考,讓教學者與研究者可針對不同認知歷程的學生給予適性化的輔助,並設計合宜的教材,以提升學生程式設計之能力。

    摘要 i Abstract ii 誌謝 iii 目錄 iv 附表目錄 iiv 附圖目錄 iiivi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究待答問題 2 第三節 名詞釋義 2 第二章 文獻探討 3 第一節 程式設計學習相關研究 3 第二節 眼動與認知 6 第三節 眼動於程式設計上的研究 9 第三章 研究方法 12 第一節 研究對象 12 第二節 研究設計 14 第三節 研究工具 17 第四節 研究流程 20 第五節 眼動原始資料處理 22 第六節 序列分析 22 第四章 研究結果與討論 24 第一節 理解遞迴題 24 第二節 理解直述題 29 第三節 除錯直述題 33 第四節 除錯遞迴題 38 第五節 綜合討論 43 第五章 結論與建議 46 第一節 研究結論 46 第二節 未來研究建議 47 參考文獻 48

    Adams J. W. and Hitch G. J. (1997). Working memory and children’s mental addition. Journal of experimental child psychology, 67(1), 21–38.
    Ahmadzadeh, M., Elliman, D., & Higgins, C. (2007). The impact of improving debugging skill on programming ability. ITALICS: Innovations in Teaching & Learning in Information & Com, 6(4), 72-87.
    Aschwanden, C. & Crosby, M. (2006). Code Scanning Patterns in Program Comprehension. Proceedings of the 39th Hawaii International Conference on System Sciences.
    Bakeman, R. (1986). Observing interaction : an introduction to sequential analysis. Cambridge ;New York: Cambridge University Press.
    Bednarik, R. (2011). Expertise-dependent visual attention strategies develop over time during debugging with multiple code representations. International Journal of Human-Computer Studies, 70(2), 143-155.
    Bednarik, R., & Tukiainen, M. (2008). Temporal eye-tracking data: evolution of debugging strategies with multiple representations. Proceedings of the 2008 symposium on Eye tracking research & applications, 26-28.
    Bednarik, R., Myller, N., Sutinen, E., & Tukiainen, M. (2006). Program visualization: Comparing eye-tracking patterns with comprehension summaries and performance. In ACM Proceedings of the 18th Workshop of the Psychology of Programming Interest Group, 68-82.
    Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M. (2005). Effects of Experience on Gaze Behavior during Program Animation. In proceedings of the 17th Annual Psychology of Programming Interest Group Workshop (PPIG'05), 17, 49- 61.
    Benander, A. C., & Benander, B. A. (1989). An analysis of Debugging Techniques. Journal of research on computing in education, 447-455.
    Benander, A. C., & Benander, B. A. (2000). An empirical analysis of debugging performance - differences between iterative and recursive constructs. Systems and Software, 54, 17-28.
    Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming. International Journal of Man-Machine Studies, 9(6), 737–751.
    Canfora, G., Cimitile, A., & Lucia, A. D. (1998). Conditioned program slicing. Information and Software Technology, 40, 595–607.
    Charlton, J.P., & Birkett, P.E. (1994). Specificity versus non-specificity of cognitive skills in elementary computer programming. Journal of Research on Computing in Education, 26(3), 391-402.
    Chen, H. C., Lai, H. D., & Chiu, F.C. (2010). Eye tracking technology for learning and education. Research in Education Sciences, 4, 39-68.
    Cheng-ching Han, & Jie-li Tsai. (2008). Eye Tracker: A Rising Star in Exploring Science Education. Science Education Monthly, 310, 2-11.
    Chien-Ya Wang, & Hsueh-Chih Chen. (2009). Brain-Based Curriculum and Teaching. Journal of Educational Practice and Research, 22(1), 139-168.
    Chmiel, R., & Loui, M. C. (2004). Debugging: from novice to expert. In SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium on Computer science education, 17–21.
    Cockburn, A., & Williams, L. (2001). The costs and benefits of pair programming. In Extreme programming examined, Giancarlo Succi and Michele Marchesi (Eds.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA 223-243.
    Colley, A. M., Hill, F., Hill, J., & Jones, A. (1995). Gender Effects in the Stereotyping of Those with Different Kinds of Computing Experience. Journal of Educational Computing Research, 12, 19-27.
    Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769-786.
    Costelloe, E. (2004). Teaching programming: The state of the art. CRITE Technical Report.
    Crosby, M., Scholtz, J. & Wiedenbeck, S. (2002). The Roles Beacons Play in Comprehension for Novice and Expert Programmers. Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest Group, London, 18-21, 58-73.
    Deek, F. P., Turoff, M., & McHugh, J. A. (1999). A common model for problem solving and program development. IEEE Transactions on Education, 42(4), 331-336.
    Duff, S. J., & Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. Brain and Cognition, 47(3), 470-493.
    Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19-23.
    Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309-331.
    Faux, R. (2006). Impact of preprogramming course curriculum on learning in the first programming course. IEEE Trans. Education, 49(1), 11-15.
    Fitzgerald, S. Lewandowski, L., McCauley, R., Murphy, L., Simon, B., Thomas, L. & Zande, C. (2008). Debugging: Finding, Fixing and Flailing, a Multi-Institutional Study of Novice Debuggers. Computer Science Education, 18, 93-116.
    Francis, L. J. (1994). The relationship between computer related attitudes and gender stereotyping of computer use. Computers & Education. 22(4), 283-289.
    Gilmore, D. J. (1991). Models of debugging. Acta Psychologica, 78, 151–172.
    Holsanova, J., Holmberg, N., & Holmqvist, K. (2009). Reading information graphics: The role of spatial contiguity and dual attentional guidance. Cognitive Psychology, 23(9), 1215-1226.
    Howell K. (2003). First Computer Languages. Journal of Computing Sciences in Colleges, 18(4), 317 – 331.
    Hsueh-Chih Chen, Hwei-Der Lai, & Fa-Chung Chiu. (2010). Eye Tracking Technology for Learning and Education. Journal of Research in Education Sciences, 55(4), 39-68.
    Hung, Y. C. (2008). The effect of problem-solving instruction on computer engineering major’s performance in Verilog programming. IEEE Trans. Education, 51(1), 131-137.
    Jackson, A. & Kutnick, P. (1996). Groupwork and computers: Task type and children's performance. Journal of Computer Assisted Learning, 12, 162-71.
    Jie-Li Tsai, Miao-Hsuan Yen, & Chin-An Wang. (2005). Recoding on Eye Movements and its Application on Chinese Reading. Research in Applied Psychology, 28, 91-104.
    Just, M.A., Carpenter, P.A. (1984). Using eye fixations to study reading comprehension. New Methods in Reading Comprehension Research, 151-182.
    Kaakinen, K. J., Hyönä, J., & Keenan, M. J. (2003). How prior knowledge, working memory capacity, and relevance of information affect eye-fixations in expository text. Experimental Psychology: Learning, Memory, and Cognition, 29(3), 447-457.
    Kiesmṻller, U. (2009). Diagnosing learners’ problem-solving strategies using learning environments with algorithmic problems in secondary education. ACM Trans. Computing Education, 9(3), article 17.
    Koenemann, J. & Robertson, S. (1991). Expert problem solving strategies for program comprehension. In ACM Proceedings of the Conference on Human Factors in Computing Systems, 125-1301.
    Kurland, D. M., Clement, C. A., Mawby, R., & Pea, R. D. (1987). Mapping the cognitive demands of learning to program. In Mirrors of minds: patterns of experience in educational computing, 103-127.
    Lahtinen E., Ala-Mutka, K. & Järvinen, H. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37, 14-18.
    Lau, W., & Yuen, A. (2009). Exploring the effects of gender and learning styles on computer programming performance: Implications for programming pedagogy. British Journal of Educational Technology, 40(4), 696–712.
    Ling-Show Chen, & Ying-Feng Kuo. (1998). A Study of Factors Affecting Programming Ability of Junior College Students - A Case of MIS Students at K.S.I.T. Journal of Technology, 13(4), 661-668.
    Mackintosh, N. J. & Bennett, E. S. (2003). The fractionation of working memory maps on to different components of intelligence. Intelligence, 31, 519-531.
    Makrakis, V. & Sawada, T. (1996). Gender, computers and other school subjects among Japanese and Swedish students. Computers Education. 26(4), 225-231.
    Marzieh, A. Dave, E., & Colin, H. (2005). An analysis of patterns of debugging among novice computer science students. In Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education (ITiCSE '05). ACM, New York, NY, USA, 84-88.
    Mayer, R. E. (1979). A psychology of learning BASIC. Communications of ACM, 22(11), 589-593.
    Mayer, R. E. (1981). The psychology of how novices learn computer programming. Computing Surveys, 13(1), 121-141.
    Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University press.
    Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20(2), 167-171.
    Mayrhauser, A. V. & Vans, A. M. (1995). Program comprehension during software maintenance and evolution. IEEE Computer, 28(8), 44-55.
    Meng-Jung Tsai, Huei-Tse Hou, Meng-Lung Lai, Wan-Yi Liu, & Fang-Ying Yang. (2011). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58, 375-385.
    Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L. & Zander., C. (2008) . Debugging: the good, the bad, and the quirky - a qualitative analysis of novices' strategies, Communications of the ACM, 163-167.
    Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. (1985). Conditions of learning in novice programmers, Journal of Educational Computing Research, 2, 37-55.
    Perugini, M., & Banse, R. (2007). Personality, implicit self-concept and automaticity. Personality, 21(3), 257-261.
    Rajlich, V., & Wilde, N. (2002). The Role of Concepts in Program Comprehension. Proceedings of the 10th International Workshop on Program Comprehension, 271-278.
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
    Renumol, V. G., Janakiram, D., & Jayaprakash, S. (2010). Identification of cognitive processes of effective and ineffective students during computer programming. ACM Transactions on Computing Education., 10(3), 1-21.
    Robinson-Staveley, K., & Cooper, J. (1990). Mere presence, gender, and reactions to computers: Studying human-computer interaction in the social context. Journal of Experimental Social Psychology, 26(2), 168–183.
    Royer, J. M., Tronsky, L. N., Chan, Y., Jackson, S. J. and Marchant, H. I. (1999). Math-Fact retrieval as the cognitive mechanism underlying gender differences in math test performance. Contemporary Educational Psychology, 24, 181-266.
    Sabah AL-Fedaghi. (2012). Conceptual framework for recursion in computer programming. Journal of Theoretical and Applied Information Technology, 46(2), 983-990.
    Sanders, M.S., & McCormick, E.J. (1987). Human factors in engineering and design. New York: McGraw-Hill.
    Shih-Kuen Cheng. (2005). Remembering Past Events: A Review of Event-Related Potential Studies of Episodic Memory. Research in Applied Psychology, 28, 75-90.
    Speck, O., Ernst, T., Braun, J., Koch, C., Miller, E., & Chang, L., (2000). Gender differences in the functional organization of the brain for working memory. Neuroreport, 11, 2581–2585
    Van, G. T., Kester, L., Nievelstein, F., Giesbers, B., & Paas, F. (2009). Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction. Computers in Human Behavior, 25(2), 325-331.
    von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during software maintenance and evolution. Computer, 28(8), 44–55.
    Wiedenbeck, S., Fix, V. & Scholtz J. (1993). Characteristics of the mental representations of novice and expert programmers: an empirical study. International Journal of Man-Machine Studies, 39(5), 793-812.
    Winslow, L. E. (1996). Programming pedagogy: A psychological overview. SIGCSE Bull, 28, 17-22.
    Wong, W. E., Yu Qi, Lei Zhao, Kai-Yuan Cai. (2007). Effective Fault Localization using Code Coverage. Proceedings of the 31st Annual International Computer Software and Applications Conference, 449-456.
    Xu, S., & Rajlich V. (2004). Cognitive process during program debugging. In ICCI'04 Proceedisng of the Third IEEE International Conference on Cognitive Informatics, 176-182.

    下載圖示
    QR CODE