簡易檢索 / 詳目顯示

研究生: 吳郁柔
Wu, Yu-Jou
論文名稱: 利用中央山脈中段地震網尋找新的長微震震源
Search for New Sources of Ambient Tremor Using Local Seismic Network
指導教授: 陳卉瑄
Chen, Hui-Hsuan
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 長微震中央山脈
英文關鍵詞: ambient tremor, central range
DOI URL: http://doi.org/10.6345/NTNU202000338
論文種類: 學術論文
相關次數: 點閱:153下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非火山自發型長微震(non-volcanic tremors)是慢地震家族的一員,常見於大型隱沒帶或板塊邊界型斷層,在孕震帶更深處,以數分鐘至數小時的持續時間釋放能量,對應的地震矩能量可高達規模六的一般地震,是了解板塊邊界的孕震潛能不可或缺的課題。臺灣的自發型長微震,過去被發現頻繁地發生在中央山脈南段下方,其特徵為地震波持續時間數分鐘至半小時,振幅與背景噪訊相當且無明顯體波波相,需依賴多測站微小波包之相近到時方能定義。長微震震源區是否僅限於中央山脈南段?測站密度能否影響震源位置?為釐清此點,本研究利用架設的臨時中央山脈中段地震網(位於長微震震源區北方,彌補原有地震網的空區),以進行長微震的自動化偵測和目視確認,進一步分析臺灣長微震的空間特徵。
      在2013年1月至2014年1月研究期間內,我們發現長微震空間分布集中於兩區:(1)中央山脈南段的長微震震源區,震源深度約15至50公里,呈南北向並向東傾,若合併前人研究目錄討論2007-2016年此區活動度,發現與潮汐之半日潮(M2)高度相關;(2)中央山脈北段的長微震震源區,長微震數量較稀疏,震源深度超過15公里並呈垂直分布,位在中央山脈斷層地震帶與縱谷斷層地震帶之間,與過去重複地震在縱谷北段下方的富集位置相近,然而由於此區仍處於區域地震網的邊陲,長微震定位的誤差仍大,未來要釐清此新震源區之確切深度方部及構造含義,須利用海底地震儀的資料,並建立更長期的目錄以利用統計上有意義的事件群,進一步定義長微震的空間特性和可能的孕震機制。

    Non-volcanic tremor is one type of of slow earthquakes phenomena. It has been detected mainly in plate boundaries including subduction zones and transform faults and is usually found to occur below the seismogenic zone. The seismic characteristics include small amplitude, long duration of several minutes to hours, no obvious arrival of body waves, and the main frequency band of 2-8 Hz. By geodetically detected slow slip events, the equivalent seismic moment could be up to Mw 6. In Taiwan, ambient tremor events were previously detected in south Central Range with duration ranging from several minutes to thirty minutes. The location of ambient tremor, although showing location uncertainty below 10 km, is determined using the stations located to south of 23.5°. Whether different source of tremor can be found using widely distributed stations remains unknown. In this study, we aim at adding temporary mountain array to the north of 23.5° in middle Central Range, to address: Are there any tremor source located outside the previously recognized source area? Does coverage of station distribution influence the tremor location? And what is the spatial and temporal characteristics of ambient tremor detected using the mountain array? During the study period from January 2013 to January 2014, we found tremor mainly concentrated in the two areas: (1) South Central Range, here tremor events are located in a depth range of 15 to 50 kilometers with north-south striking feature, consistent with the previous discovery (2) middle Central Range ( northern than 23.5°N), here tremor events are vertically aligned and located deeper than 15 kilometers, roughly underneath the eastern flank of the Central Range. The new tremor source is located near the edge of seismic station coverage, leading to large location uncertainties of greater than 10 km. From the mapview, however, we found that the newly discovered tremor activity is roughly overlapped with the location of repeating events along the Central Range fault. By integrating with previous tremor catalogs, the temporal evolution of tremor activities in Taiwan illustrates a quiescence during the period of 2013-2015, while the rest of the study period from 2007 to 2016 reveals the concentration in southern Central Range. The cause of the tremor quiescence may provide the clue for the generation mechanism of tremor, however, requires the analysis on the long-term tidal, GPS, precipitation data in the future.

    謝辭 I 摘要 II Abstract III 目次 V 表次 VII 圖次 VIII 第一章 緒論 1 第二章 前人研究 2 2.1 長微震的重要性 2 2.2 臺灣的長微震 13 2.3 長微震的偵測方法 20 第三章 研究方法 28 3.1 研究區域與資料選定 28 3.2 長微震偵測、持續時間定義與定位 30 3.3 利用SSA參數偵測長微震 34 3.4 理論潮汐應力計算與潮汐敏感度 36 第四章 研究結果 37 4.1 長微震與似長微震的區域地震 37 4.2 長微震偵測結果與訊號特徵 41 4.3 長微震的空間分布與定位誤差 42 4.4 長微震的活動度 47 第五章 討論 48 5.1 長微震時空分布與地震網差異之關係 48 5.2 中央山脈南段長微震頻譜特徵與活動度 54 5.3 中央山脈北段可能的長微震震源與頻譜特徵 61 5.4 長微震之規模估計 66 第六章 結論 67 參考文獻 69 附錄一、本研究所使用的測站資訊 74

    Beroza, G.C. and Ide, S., 2011. Slow Earthquakes and Nonvolcanic Tremor. Annual review of Earth and planetary sciences, 39: 271-296.
    Brudzinski, M.R. and Allen, R.M., 2007. Segmentation in Episodic Tremor and Slip All Along Cascadia. Geology, 35(10): 907-910.
    Chao, K., Peng, Z., Wu, C., Tang, C.-C. and Lin, C.-H., 2012. Remote Triggering of Non-Volcanic Tremor around Taiwan. Geophysical Journal International, 188(1): 301-324.
    Chen, K.H., Tai, H.-J., Ide, S., Byrne, T.B. and Johnson, C.W., 2018. Tidal Modulation and Tectonic Implications of Tremors in Taiwan. Journal of Geophysical Research: Solid Earth, 123(7): 5945-5964.
    Chuang, L.Y., Chen, K.H., Wech, A., Byrne, T. and Peng, W., 2014. Ambient Tremors in a Collisional Orogenic Belt. Geophysical Research Letters, 41(5): 1485-1491.
    Efron, B., 1992. Bootstrap Methods: Another Look at the Jackknife. In: Breakthroughs in Statistics. Springer: pp: 569-593.
    Gomberg, J., Rubinstein, J.L., Peng, Z., Creager, K.C., Vidale, J.E. and Bodin, P., 2008. Widespread Triggering of Nonvolcanic Tremor in California. Science, 319(5860): 173-173.
    Hanks, T.C. and Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350.
    Houston, H., 2015. Low Friction and Fault Weakening Revealed by Rising Sensitivity of Tremor to Tidal Stress. Nature Geoscience, 8(5): 409.
    Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M. and Hsieh, H.-H., 2014. Joint Vp and Vs Tomography of Taiwan: Implications for Subduction-Collision Orogeny. Earth and Planetary Science Letters, 392: 177-191.
    Ide, S., 2010. Striations, Duration, Migration and Tidal Response in Deep Tremor. Nature, 466(7304): 356.
    Ide, S., 2012. Variety and Spatial Heterogeneity of Tectonic Tremor Worldwide. Journal of Geophysical Research: Solid Earth, 117(B3).
    Ide, S., Beroza, G.C., Shelly, D.R. and Uchide, T., 2007. A Scaling Law for Slow Earthquakes. Nature, 447(7140): 76.
    Ide, S., Imanishi, K., Yoshida, Y., Beroza, G.C. and Shelly, D.R., 2008. Bridging the Gap between Seismically and Geodetically Detected Slow Earthquakes. Geophysical Research Letters, 35(10).
    Ide, S. and Tanaka, Y., 2014. Controls on Plate Motion by Oscillating Tidal Stress: Evidence from Deep Tremors in Western Japan. Geophysical Research Letters, 41(11): 3842-3850.
    Ide, S., Yabe, S., Tai, H.J. and Chen, K.H., 2015. Thrust‐Type Focal Mechanisms of Tectonic Tremors in Taiwan: Evidence of Subduction. Geophysical Research Letters, 42(9): 3248-3256.
    Ito, Y. and Obara, K., 2006. Very Low Frequency Earthquakes within Accretionary Prisms Are Very Low Stress‐Drop Earthquakes. Geophysical Research Letters, 33(9).
    Ito, Y., Obara, K., Shiomi, K., Sekine, S. and Hirose, H., 2007. Slow Earthquakes Coincident with Episodic Tremors and Slow Slip Events. Science, 315(5811): 503-506.
    Kao, H. and Jian, P.-R., 2001. Seismogenic Patterns in the Taiwan Region: Insights from Source Parameter Inversion of Bats Data. Tectonophysics, 333(1-2): 179-198.
    Kao, H., Shan, S.-J., Dragert, H., Rogers, G., Cassidy, J.F. and Ramachandran, K., 2005. A Wide Depth Distribution of Seismic Tremors Along the Northern Cascadia Margin. Nature, 436(7052): 841.
    Kao, H., Thompson, P.J., Rogers, G., Dragert, H. and Spence, G., 2007. Automatic Detection and Characterization of Seismic Tremors in Northern Cascadia. Geophysical Research Letters, 34(16).
    La Rocca, M., McCausland, W., Galluzzo, D., Malone, S., Saccorotti, G. and Del Pezzo, E.J.G.r.l., 2005. Array Measurements of Deep Tremor Signals in the Cascadia Subduction Zone. 32(21).
    Nadeau, R.M. and Guilhem, A., 2009. Nonvolcanic Tremor Evolution and the San Simeon and Parkfield, California, Earthquakes. Science, 325(5937): 191-193.
    Obara, K., 2002. Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573): 1679-1681.
    Payero, J.S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez‐Campos, X. and Clayton, R.W., 2008. Nonvolcanic Tremor Observed in the Mexican Subduction Zone. Geophysical Research Letters, 35(7).
    Peng, W., Chen, K.H. and Toda, S., 2019. Evaluating the Association between Tectonic Tremors and Earthquakes in Taiwan from 7 Years Catalogs. Journal of Geophysical Research: Solid Earth, 124(4): 3950-3965.
    Peng, Z. and Chao, K., 2008. Non-Volcanic Tremor beneath the Central Range in Taiwan Triggered by the 2001 M W 7.8 Kunlun Earthquake. Geophysical Journal International, 175(2): 825-829.
    Rogers, G. and Dragert, H., 2003. Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627): 1942-1943.
    Romanet, P. and Ide, S., 2019. Ambient Tectonic Tremors in Manawatu, Cape Turnagain, Marlborough, and Puysegur, New Zealand. Earth, Planets and Space, 71(1): 59.
    Rubinstein, J.L., Shelly, D.R. and Ellsworth, W.L., 2009. Non-Volcanic Tremor: A Window into the Roots of Fault Zones. In: New Frontiers in Integrated Solid Earth Sciences. Springer: pp: 287-314.
    Saffer, D.M. and Wallace, L.M., 2015. The Frictional, Hydrologic, Metamorphic and Thermal Habitat of Shallow Slow Earthquakes. Nature Geoscience, 8(8): 594-600.
    Shelly, D.R., 2015. Complexity of the Deep San Andreas Fault Zone Defined by Cascading Tremor. Nature Geoscience, 8(2): 145.
    Shelly, D.R., Beroza, G.C. and Ide, S., 2007. Non-Volcanic Tremor and Low-Frequency Earthquake Swarms. Nature, 446(7133): 305.
    Shin, T.-C., Chang, C.-H., Pu, H.-C., Hsiao-Wei, L. and Leu, P.-L., 2013. The Geophysical Database Management System in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 24(1): 11.
    Sit, S., Brudzinski, M. and Kao, H., 2012. Detecting Tectonic Tremor through Frequency Scanning at a Single Station: Application to the Cascadia Margin. Earth and Planetary Science Letters, 353: 134-144.
    Tang, C.C., Peng, Z., Chao, K., Chen, C.H. and Lin, C.H., 2010. Detecting Low‐Frequency Earthquakes within Non‐Volcanic Tremor in Southern Taiwan Triggered by the 2005 Mw8. 6 Nias Earthquake. Geophysical Research Letters, 37(16).
    Wech, A., Boese, C., Stern, T. and Townend, J., 2012. Tectonic Tremor and Deep Slow Slip on the Alpine Fault. Geophysical Research Letters, 39(10).
    Wech, A.G. and Creager, K.C., 2008. Automated Detection and Location of Cascadia Tremor. Geophysical Research Letters, 35(20).
    Yabe, S. and Ide, S., 2014. Spatial Distribution of Seismic Energy Rate of Tectonic Tremors in Subduction Zones. Journal of Geophysical Research: Solid Earth, 119(11): 8171-8185.
    Yabe, S., Tanaka, Y., Houston, H. and Ide, S., 2015. Tidal Sensitivity of Tectonic Tremors in Nankai and Cascadia Subduction Zones. Journal of Geophysical Research: Solid Earth, 120(11): 7587-7605.
    陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱(2018)。臺灣東部碰撞帶孕震構造。經濟部中央地質調查所特刊,第三十三號,民國107 年11 月,第123-155 頁。
    莊育菱(2012)。臺灣非火山長微震半自動化偵測系統。國立臺灣師範大學地球科學所碩士論文,共93 頁。
    葉庭禎(2011)。臺灣地震與長微震之動態誘發。國立臺灣大學地質科學所碩士論文,共102頁。
    戴心如(2016)。臺灣非火山長微震之活動特徵及可能孕構造和機制,國立臺灣師範大學地球科學所碩士論文,共80頁。
    顏元奕(2020)。臺灣中央山脈南段長微震的定位誤差分析及改進。國立臺灣師範大學地球科學所碩士論文,共99 頁。

    下載圖示
    QR CODE