簡易檢索 / 詳目顯示

研究生: 簡珮瑜
Pei-Yu Jian
論文名稱: 福山森林生態系巢蕨對垂葉書帶蕨 促進作用之探討
One way facilitation between epiphytic Asplenium antiquum on Haplopteris zosterifolia in a subtropical rain forest in northeastern Taiwan
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 附生植物促進作用蕨類植物
英文關鍵詞: epiphyte, facilitation, pteridophyta
論文種類: 學術論文
相關次數: 點閱:108下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物種之間的交互作用是備受討論的議題 ,物種間除了負向的競爭作用外,還有正向的交互作用(positive interaction),然而探討物種間正向交互關係遠比探討負向的交互作用來的少。近來一些研究發現正向的交互作用有助於生物的多樣性的維持,全球變遷為許多生物帶來更多逆壓,而研究認為逆境中正向的促進作用更普遍。雖然已有研究探討附生植物與寄主樹種間的正向交互作用,但幾無研究檢驗附生植物之間的交互作用。在福山試驗林常可看到巢蕨(Asplenium antiquum) 與垂葉書帶蕨(Haplopteris zosterifolia)有共同出現的現象,本研究利用野外的調查及移除實驗,探討巢蕨與垂葉書帶蕨之間是否存在正向的促進作用,若有其機制為何? 田野調查顯示垂葉書帶蕨有偏與巢蕨一起出現的情形 (56%),而巢蕨則無偏好與垂葉書帶蕨一起出現(18%)。單獨出現及與垂葉書帶蕨一起出現的巢蕨,其葉片展幅長度沒有顯著差異,而與巢蕨一同出現時的垂葉書帶蕨較單獨存在時葉片較長。此結果顯示,垂葉書帶對巢蕨可能是中性的作用而巢蕨對垂葉書帶蕨則可能有促進作用。移除實驗的結果顯示垂葉書帶蕨的移除對巢蕨葉片數量及葉片長度均無顯著影響,支持其對巢蕨的效應為中性。而同時移除巢蕨葉片基座會使其下方的垂葉書帶蕨其葉片長度下降,僅移除巢蕨葉則無此現象;蕨葉營養顯示,N、Ca、Mg在控制組及移除書帶蕨組無顯著差異;移除垂葉書帶組的巢蕨葉C含量較低,但差異甚小,P的含量則是較控制組高,但移除巢蕨基座並未使垂葉書帶蕨P含量下降,故書帶蕨對巢蕨營養的效應並不明顯;垂葉書帶蕨的營養含量不受是否移除巢蕨及其基座的影響。本研究結果顯示,巢蕨能促進垂葉書帶蕨的生長,因僅移除巢蕨葉並顯著影響故此促進作用並非來自遮光造成的輻射改變,而移除基座與否對垂葉書帶蕨的營養並無影響,故促進作用不是源自基座所提供的營養。因附生植物未能直接自土壤中取得水,而巢蕨基座具高的儲水能力,故推論巢蕨對垂葉書帶蕨產生的促進作用可能源自降低水的逆壓,惟此尚需進一步的研究加以檢驗。

    Species interaction is a widely studied ecological issue. In addition to the most frequently studied negative interaction—competition, there is also positive interaction. However, positive interaction is much less explored compared with competition. Recent studies indicate that positive interaction helps to maintain biodiversity. Global change is expected to increase stress to organisms and studies suggest that positive interaction is more common in stressed environments. Although some studies have examined positive interaction between epiphytes and their host trees, barely any studies examined interaction between epiphytes. Asplenium antiquum and Haplopteris zosterifolia often co-occur at Fushan Experimental Forest. I conducted field survey and removal experiments to examine if there is positive interaction between the two epiphytic ferns and if so what are the causes? My field survey indicates that most H. zosterifolia (56%) co-occurred with A. antiquum whereas the latter showed no preference for the co-occurrence with the former. The size of H. zosterifolia plants that co-occurred with A. antiquum was larger than those that did not whereas the size of A. antiquum did not differ between those that co-occurred with H. zosterifolia and those that did not. The result suggests that H. zosterifolia probably has a neutral effect on the growth of A. antiquum whereas the latter has a facilitative effect on the growth of the former. Removing H. zosterifolia had no effect on the number and length of fronds of A. antiquum which supports its neutral effect on A. antiquum. Removing both the substrate and fronds of A. antiquum led to shorter fronds of H. zosterifolia and such effect was not detected when only the fronds of A. antiquum were removed. Chemical analysis of fronds indicates that the content of N, Ca, and Mg of A. antiquum did not differ between control and H. Zosterifolia removal treatment but the control group had higher C and lower P. I did not have explanation for such differences but the difference in P was not observed in the fronds of H. Zosterifolia among the three treatments (control, A. antiquum frond removal and A. antiquum frond and substrate removal). Overall the result shows only very weak evidence of the co-occurrence of the two epiphytic ferns on their nutrient content. Changes in solar radiation was not the major effect of A. antiquum on H. Zosterifolia because when only the fronds were removed although the light environment changed there was no significant effect on the growth of H. Zosterifolia. The removal of A. antiquum did not have significant effect nutrient content of the fronds of H. Zosterifolia so the facilitative effect should not come from nutrient enrichment. Because epiphytes have no direct asses to soil water and the substrate of A. antiquum has very high water holding capacity, I suspect that the facilitative effect comes from the alleviation of drought stress from the water in the substrate. However, more studies are needed to validate my inference.

    第一章、研究背景與目的....................................1 一、物種間的交互作用......................................1 二、促進作用..............................................4 三、環境逆壓與促進作用....................................4 四、附生植物與促進作用....................................5 五、處在逆境下的附生植物..................................6 六、研究動機與目的........................................7 第二章、材料與方法........................................8 一、研究地................................................8 二、研究物種.............................................11 三、田野調查.............................................11 四、移除實驗.............................................13 (1) 植株的選取...........................................13 (2) 葉長及葉量監測.......................................15 (3) 蕨葉營養成分分析.....................................15 (4) 光環境分析...........................................16 五、統計分析.............................................17 第三章、結果.............................................18 一、田野調查.............................................18 (1) 巢蕨.................................................18 (2) 垂葉書帶蕨...........................................20 二、野外移除實驗.........................................22 A.光環境.................................................22 B.葉長與葉量.............................................30 C.營養分析...............................................36 第四章、討論.............................................52 一、野外伴生現象.........................................52 二、巢蕨上下方之光環境...................................54 三、野外移除實驗.........................................55 (1) 巢蕨與垂葉書帶蕨的生長表現...........................55 (2) 巢蕨與垂葉書帶蕨蕨葉養分濃度變化.....................56 結論.....................................................58 參考文獻.................................................59

    林業試驗所 (1989) 福山試驗林原生植物名錄。林頁叢刊。第29號。
    江英煜 (1995) 關刀溪森林生態系依附植物之研究。國立中興大學植物學系碩士論文。
    徐嘉君 (2007) 台灣的維管束附生植物綜論。臺大實驗林研究報告 21:161-180。
    顏睦歆 (2007) 台灣山蘇花基質氮源與無脊椎動物群聚之研究。國立臺灣大學昆蟲學研究所碩士論文。
    嚴中佑 (2004) 關刀溪森林生態系著生植物基質之節肢動物群聚結構。國立中興大學昆蟲學系碩士論文。
    楊遠坡、劉和義 (2002) 台灣維管束植物簡誌,行政院農業委員會,第六卷。
    Adams, S., S. Pearson, and P. Hadley. 1997. An Analysis of the Effects of Temperature and Light Integral on the Vegetative Growth of Pansy cv. Universal Violet (Viola × wittrockiana Gams). Annals of Botany 79:219.
    Augspurger, C. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:1705-1712.
    Barkman, J. 1969. Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum.
    Barthlott, W., V. Schmit-Neuerburg, J. Nieder, and S. Engwald. 2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152:145-156.
    Benzing, D. 1990. Vascular epiphytes: general biology and related biota. Cambridge University .
    Bertness, M. and R. Callaway. 1994. Positive interactions in communities. Trends in Ecology & Evolution 9:191-193.
    Boegner, A. 1999. Diversität und Phytogeographie der epiphytischen Angiospermen ausgewählter paläo- und neotropischer Gebiete. Unpublished diploma thesis. Bonn Universität. Bonn.
    Brooker, R. and T. Callaghan. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81:196-207.
    Brooker, R., F. Maestre, R. Callaway, C. Lortie, L. Cavieres, G. Kunstler, P. Liancourt, K. Tielborger, J. Travis, and F. Anthelme. 2008. Facilitation in plant communities: the past, the present, and the future. Journal of Ecology 96:18-34.
    Bruno, J. 2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81:1179-1192.
    Bruno, J., J. Stachowicz, and M. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution 18:119-125.
    Callaway, R. 1995. Positive interactions among plants. The Botanical Review 61:306-349.
    Callaway, R. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143-149.
    Callaway, R. 2007. Positive interactions and interdependence in plant communities. Springer dordrecht, the netherlands.
    Callaway, R. and L. Walker. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958-1965.
    Callaway, R. M., K. O. Reinhart, G. W. Moore, D. J. Moore, and S. C. Pennings. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221-230.
    Canham, C., J. Denslow, W. Platt, J. Runkle, T. Spies, and P. White. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research 20:620-631.
    Cardinale, B., M. Palmer, and S. Collins. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426-429.
    Chu, C., F. Maestre, S. Xiao, J. Weiner, Y. Wang, Z. Duan, and G. Wang. 2008. Balance between facilitation and resource competition determines biomass density relationships in plant populations. Ecology Letters 11:1189-1197.
    Clark, D., D. Clark, P. Rich, S. Weiss, and S. Oberbauer. 1996. Landscape-scale evaluation of understory light and canopy structure: methods and application in a neotropical lowland rain forest. Canada Journal of Forest Research 26:747-757.
    Clements, F. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington.
    Davies-Colley, R., G. Payne, and M. Van Elswijk. 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24:111-121.
    Drezner, T. 2006. Plant facilitation in extreme environments: the non-random distribution of saguaro cacti (Carnegiea gigantea) under their nurse associates and the relationship to nurse architecture. Journal of Arid Environments 65:46-61.
    Ellwood, M., D. Jones, and W. Foster. 2002. Canopy Ferns in Lowland Dipterocarp Forest Support a Prolific Abundance of Ants, Termites, and Other Invertebrates. Biotropica 34:575-583.
    Estrada, A. and R. Coates-Estrada. 1991. Howler monkeys (Alouatta palliata), dung beetles (Scarabaeidae) and seed dispersal: ecological interactions in the tropical rain forest of Los Tuxtlas, Mexico. Journal of Tropical Ecology 7:459-474.
    Feinsinger, P. 1978. Ecological interactions between plants and hummingbirds in a successional tropical community. Ecological Monographs 48:269-287.
    Flores, J. and E. Jurado. 2003. Are nurse-protege interactions more common among plants from arid environments? Journal of Vegetation Science 14:911-916.
    Gause, G. 1934. Experimental analysis of Vito Volterra's mathematical theory of the struggle for existence. Science 79:340.
    Gomez-Aparicio, L., R. Zamora, J. Gomez, J. Hodar, J. Castro, and E. Baraza. 2008. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications 14:1128–1138.
    Hofstede, R. and J. Wolf. 1993. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Biomasa de epifitas y estado nutricional de un bosque lluvioso colombiano de altura. Selbyana. 14:37-45.
    Hsu, C., F. Horng, and C. Kuo. 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology 18:659-670.
    Hunter, A. and L. Aarssen. 1988. Plants helping plants. Bioscience 38:34-40.
    Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Symposia on Quantitative Biology 22:415-427.
    Ibisch, P. 1996. Neotropische Epiphytendiversitat: das Beispiel Bolivien. Archiv naturwissenschaftlicher Dissertationen .
    Johnson, S. and K. Steiner. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution 15:140-143.
    Kress, W. 1989. The systematic distribution of vascular epiphytes. Springer, Berlin.
    Lambers, H., F. Chapin, and T. Pons. 2008. Plant physiological ecology. Springer, new york.
    Laube, S. and G. Zotz. 2003. Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology 17:598-604.
    Lawton, R. 1990. Canopy gaps and light penetration into a wind-exposed tropical lower montane rain forest. Canada Journal of Forest Research 20:659-667.
    Lin, T. C., H. S.P., K. H.B., and H. Y.J. 2000. Throughfall patterns in a subtripical rain forest of northeastern Taiwan. Journal of Environmental Quality 29:1186-1193.
    Lin, T. C., H. S.P., H. Y.J., K. H.B., W. L.J., and L. K.C. 2001. Base cation leaching from the canopy of a subtropical rainforest in northeastern Taiwan. Canadian Journal of Forest Research 31:1156-1163.
    Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. Grime, A. Hector, D. Hooper, M. Huston, D. Raffaelli, and B. Schmid. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804.
    Martin, C., T. Lin, C. Hsu, S. Lin, K. Lin, Y. Hsia, and W. Chiou. 2004. Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus. Taiwan. International Journal of Plant Sciences 165:65-72.
    Mercier, H., G. Kerbauy, M. Carvalho, and E. Derbyshire. 1997. Growth and GDH and AAT isoenzyme patterns in terrestrial and epiphytic bromeliads as influenced by nitrogen source. Selbyana 18:89-94.
    Miller, M. and M. Hay. 1996. Coral-seaweed-grazer-nutrient interactions on temperate reefs. Ecological Monographs 66:323-344.
    Nadkarni, N. 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249-256.
    Nieder, J., J. Prosperi, and G. Michaloud. 2001. Epiphytes and their contribution to canopy diversity. Plant Ecology 153:51-63.
    Oberbauer, S., D. Clark, D. Clark, P. Rich, and G. Vega. 1993. Light environment, gas exchange, and annual growth of saplings of three species of rain forest trees in Costa Rica. Journal of Tropical Ecology 9:511-523.
    Pentecost, A. 1998. Some observations on the biomass and distribution of cryptogamic epiphytes in the upper montane forest of the Rwenzori Mountains, Uganda. Global Ecology and Biogeography Letters 7:273-284.
    Rich, P. 1989. A manual for analysis of hemispherical canopy photography. Los Alamos National Lab., NM (USA).
    Schupp, E. 1993. Quantity, quality and the effectiveness of seed dispersal by animals. Plant Ecology 107:15-29.
    Shabala, S. and L. Shabala. 2002. Kinetics of net H+, Ca2+, K+, Na+, and Cl - fluxes associated with post chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiologia Plantarum 114:47-56.
    Shien, W. C., Chiou,W. L. and C. E. Devol. 1994. In Huang et.al. Flora of Taiwan. 2nd.1:260.
    Smith, A., K. Hogan, and J. Idol. 1992. Spatial and temporal patterns of light and canopy structure in a lowland tropical moist forest. Biotropica 24:503-511.
    Stachowicz, J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235-246.
    Tanner, E. 1977. Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. The Journal of Ecology 65:883-918.
    Valiente-Banuet, A., A. Rumebe, M. Verdu, and R. Callaway. 2006. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences 103:16812.
    Wegner, C., M. Wunderlich, M. Kessler, and M. Schawe. 2003. Foliar C: N ratio of ferns along an andean elevational gradient. Biotropica 35:486-490.
    Zotz, G. and P. Hietz. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52:2067.

    下載圖示
    QR CODE