簡易檢索 / 詳目顯示

研究生: 宋燕玲
Song, Yan-Ling
論文名稱: 含釕化合物修飾碳管製備: Ru(bpy)2(phen-dione)2+與亞硼酸電化學環合反應探討
Ruthenium Complex Modified Photomagnetic Carbon Nanotube:Formed via Boronate Ester Cyclization Reaction
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 3-氨基苯亞硼酸2,2'-二吡啶-5,6-二羰基菲囉啉釕化物掃瞄式穿隧顯微技術磁性模組AFM顯微術光磁性
英文關鍵詞: 3-Aminophenylboronic acid, Bis(2,2'-bipyridine)-[1,10-phenanthroline-5,6-dione] ruthenate(II), Scanning tunnel microscope, Magnetic-mode AFM, Photomagnetism
DOI URL: https://doi.org/10.6345/NTNU202203440
論文種類: 學術論文
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑒於亞硼酸可與羥基化合物進行環合反應產生亞硼酸酯,本論文探討以偶氮還原修飾法先將3-氨基苯亞硼酸(簡稱APBA)修飾於熱解石墨(簡稱HOPG)或奈米碳管表面,再藉由電化學或化學還原反應將2,2'-二吡啶-5,6-二羰基菲囉啉釕錯合物(簡稱Ru(bpy)2(phen-dione)2+)還原成2,2'-二吡啶-5,6-二羥基菲囉啉釕錯合物,使之與APBA進行環合反應,進而固定於這些碳質表面。
    掃瞄式穿隧顯微術(簡稱STM)分析顯示:HOPG表面的粗糙度在修飾APBA後會由0.259 nm 增高至0.397 nm。若再經Ru(bpy)2(phen-dione)2+修飾,則會再增高至0.783 nm,其差值約為單層APBA與Ru(bpy)2(phen-dione)2+吸附。電化學交流阻抗與循環伏安法均證實此一現象。磁性模組AFM顯微術證實所修飾的奈米碳管受473-nm雷射光照射下時會顯現光磁性。由於該光磁性具有再現性,以亞硼酸酯環合反應所製備的碳質表面極具室溫光磁轉換應用潛力。

    In light of the fact that boronic acids can react with polyols to form stable boronate esters, we devoted effort to modifying 3-aminophenylboronic acid (denoted APBA)and bis(2,2'-bipyridine)-[1,10-phenanthroline-5,6-dione] ruthenate(II) (denoted Ru(bpy)2(phen-dione)2+) on carbon surfaces, such as highly ordered pyrolytic graphite (HOPG) and carbon nanotubes(CNTs). As phen-dione and Ru(bpy)2(phen-dione)2+ were subjected to cathodic reduction, phen-diol and Ru(bpy)2(phen-diol)2+ could be formed, making the products possible to be attached to the boronates grafted to the carbon surfaces from APBA. STM, electrochemical impedance (EIS) and cyclic voltammetry (CV) support the results. The magnetic-mode AFM, in addition , showed that the resultant CNTs exhibited photomagnetism as exposed the 473- nm light. The photomagnetism is highly reproducible. The created carbon surfaces are useful in spintronics.

    摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 X 第一章 緒論 1 1-1 亞硼酸酯 1 1-2 含醌釕化合物 4 1-3 電化學交流阻抗分析 6 1-4 掃瞄探針顯微鏡 8 1-5 研究動機 10 第二章 材料與方法 11 2-1 實驗藥品 11 2-2 實驗設備 13 2-3 實驗步驟 15 第三章 實驗結果與討論 22 3-1 光電化學基本性質之鑑定 23 3-2 苯胺亞硼酸修飾電極環合反應探討 27 3-2-1 交流阻抗分析電極表面之修飾 28 3-2-2 循環伏安法分析電極表面之修飾 33 3-2-3 X-ray光電子能譜分析 37 3-3 Ru(bpy)2(phen-dione)2+與pH之關係 39 3-3-1 pH值對phen-dione以及Ru(bpy)2(phen-dione)2+電化學的影響 39 3-3-2 pH值對APBA環合效率之影響 42 3-3-3 STM影像分析 44 3-3-4 AFM影像分析修飾電極 49 3-3-5 SEM分析修飾電極 50 3-4 Ru|APBA|CNT奈米碳管合成 51 3-5 Ru|APBA|CNT磁性探討 55 第四章 結論 59 第五章 未來展望 60 第六章 參考文獻 61 第七章 附錄 64

    [1]K. Lacina, P. Skládal, T. D. James, Chem. Cent. J. 2014, 8, 60.
    [2]R. Nishiyabu, Y. Kubo, T. D. James, J. S. Fossey, Chem. Commun. 2011, 47, 1124.
    [3]A. Matsumoto, R. Yoshida, K. Kataoka, Biomacromolecules, 2004, 5, 1038.
    [4]S. Takahashi, J.-i. Anzai, Langmuir, 2005, 21, 5102.
    [5]Y. Zhang, Y. Guan, S. Zhou, Biomacromolecules, 2006, 7, 3196.
    [6]C. Zhang, M. D. Losego, P. V. Braun, Chem. Mater. 2013, 25, 3239.
    [7]B. V. V. S. P. Kumar, K. Salikolimi, M. Eswaramoorthy, Langmuir, 2014, 30, 4540.
    [8]J. Mathiyarasu, S. Senthilkumar, K. L. N. Phani, V. Yegnaraman, J. Appl. Electrochem. 2005, 35, 513.
    [9]W. Wu, H. Zhu, L. Fan, D. Liu, R. Renneberg, S. Yang, Chem. Commun. 2007, 2345.
    [10]S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y.-C. Lai, H. He, Anal. Chem. 2007, 79, 2583.
    [11]M. Zhong, Y. Teng, S. Pang, L. Yan, X. Kan, Biosens Bioelectron. 2015, 64, 212
    [12]J. M. Abad, M. Vélez, C. Santamaría, J. M. Guisán, P. R. Matheus, L. Vázquez, I. Gazaryan, L. Gorton, T. Gibson, V. M. Fernández, J. Am. Chem. Soc. 2002, 124, 12845.
    [13]X. Zhang, Y. Wu, Y. Tu, S. Liu, Analyst, 2008, 133, 485.
    [14]S. Liu, B. Miller, A. Chen, Electrochem. Commun. 2005, 7, 1232.
    [15]S. Badhulika, C. Tlili, A. Mulchandani, Analyst, 2014, 139, 3077.
    [16]M. Zhong, Y. Dai, L. Fan, X. Lu, X. Kan, Analyst, 2015, 140, 6047.
    [17]S. A. Elfeky, S. E. Flower, N. Masumoto, F. D´Hooge, L. Labarthe, W. Chen, C. Len, T. D. James, J. S. Fossey, Chem. Asian. J. 2010, 5, 581.
    [18]S. Liu, F. Shi, X. Zhao, L. Chen, X. Su, Biosens. Bioelectron. 2013, 47, 379.
    [19]P. Shen, Y. Xia, Anal. Chem. 2014, 86, 5323.
    [20]E. Shoji, M. S. Freund, J. Am. Chem. Soc. 2002, 124, 12486.
    [21]蘇怡婷,國立臺灣師範大學化學研究所碩士論文,2009。
    [22]K. Morita, N. Hirayama, H. Imura, A. Yamaguchi, N. Teramae, J. Electroanal. Chem. 2011, 656, 192.
    [23]鍾舜宇,國立臺灣師範大學化學研究所碩士論文,2010。
    [24]F. H. Burstall, J. Chem. Soc. 1936, 173.
    [25]N. E. Tokel, A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862.
    [26]C. A. Goss, H. D. Abruña, Inorg. Chem. 1985, 24, 4263.
    [27]M. V. del Pozo, C. Alonso, F. Pariente, E. Lorenzo, Anal. Chem. 2005, 77, 2550.
    [28]S. Arounaguiri, D. Easwaramoorthy, A. Ashokkumar, A. Dattagupta, B. G. Maiya, Proc. Indian Acad. Sci.(Chem. Sci.), 2000, 112, 1.
    [29]F. H. Haghighi, H. Hadadzadeh, F. Darabi, H. Farrokhpour, M. Daryanavard, H. A. Rudbari, J. Mol. Struct. 2013, 1040, 98.
    [30]C. Deegan, B. Coyle, M. McCann, M. Devereux, D. A. Egan, Chem. Biol. Interact. 2006, 164, 115.
    [31]Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V. M. Fernández, E. Lorenzo, H. D. Abruña, Anal. Chem. 1996, 68, 3688.
    [32]B. Reuillard, A. Le Goff, S. Cosnier, Anal. Chem. 2014, 86, 4409.
    [33]P. Parakh, S. Gokulakrishnan, H. Prakash, Sep. Purif. Technol. 2013, 109, 9.
    [34]G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49, 57.
    [35]R. J. Hamers, R. M. Tromp, J. E. Demuth, Phys. Rev. Lett. 1986, 56, 1972.
    [36]M. Wang, S. Bugarski, U. Stimming, J. Phys.Chem.C 2008, 112, 5165.
    [37]R. Tanoue, R. Higuchi, K. Ikebe, S. Uemura, N. Kimizuka, A. Z. Stieg, J. K. Gimzewski, M. Kunitake, Langmuir. 2012, 28, 13844.
    [38]H. Matsuda, Y. Ayabe, Z. Elektrochem, 1955, 59, 494.
    [39]A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 1st Ed. Wiley, New York, 1980, Chap. 6, 277.
    [40]W. J. Blaedel, R. C. Engstrom, Anal. Chem. 1978, 50, 476.

    下載圖示
    QR CODE