簡易檢索 / 詳目顯示

研究生: 藍漢中
Lan, Han-Zhong
論文名稱: 聚(丙烯酸/丙烯醯胺)/飛灰複合水膠的合成和性質研究
Study on the synthesis and properties of poly(acrylic acid-co-acrylamide)/fly ash composite hydrogel
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 136
中文關鍵詞: 陰離子型水膠無機複合型吸水率自養護劑抗壓強度水化程度砂漿
英文關鍵詞: anionic, hydrogel, inorganic composite, water absorbency, self-curing reagent, mortar, compressive strength, he degree of hydration
論文種類: 學術論文
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為製備兩種陰離子型的高吸水性水膠,polyacrylic acid/polyacryl amide ( P(AA/AM) )和polyacrylic acid/polyacryl amide/fly ash ( P(AA/AM)/FA),起始劑為ammmonium persulfate (APS ),交聯劑為N,N’methylene bisacrylamide (MBA),使用FT-IR作結構鑑定,樣品表面孔洞透過SEM觀察,影響反應的參數包括:單體比例、起始劑劑量、交聯劑劑量、反應溫度和飛灰比例,接著浸泡到純水和鹽水及各種不同環境中測其吸水率。並測試兩種水膠的機械性質,包含抗壓強度和乘載壓力下吸水率(AUL)。
    接著評估P(AA/AM)/FA水膠加到水泥漿和水泥砂漿中作為自養護劑時,添加劑量、飛灰比例和粒徑大小是否合宜,於水泥漿中探討其水化程度、圓盤裂縫和凝結時間;水泥砂漿中則探討水分重量損失、保水率、抗壓強度、內部濕度和乾縮量。
    實驗結果顯示,在最佳反應條件下,P(AA/AM)/FA水膠在純水中的吸水率為386(g/g),0.1M NaCl(aq) 和0.1M CaCl2(aq)的吸水率分別為56、26(g/g)。抗壓強度為47.5(Kgf/cm2)。
    將P(AA/AM)/FA水膠加入水泥砂漿中當自養護劑,最佳劑量、粒徑大小和飛灰比例分別為0.2(wt%)、0.082(mm)和10(wt%)時,對水泥砂漿及水泥漿中的重量損失、抗壓強度,內部濕度、乾縮量和圓盤裂縫與控制組比較均提升效能。

    This main goal of thesis is to prepare two anionic superabsorbent hydrogel, polyacrylic acid / polyacryl amide ( P(AA/AM) ) and polyacrylic acid / polyacryl amide / fly ash ( P(AA/AM)/FA ). Ammmonium persulfate ( APS) and N,N’methylene bisacrylamide (MBA) were used as an initiator and crosslinking agent, respectively. Using FT-IR to identify structure, surface porosity is observed by SEM. The parameters what could be effected experiment are monomer ratio, initiator dosage, crosslinker dosage, reaction temperature and proportion of fly ash. We measure water absorbency of hydrogel in water, saline solution and variety of different situation and then test the mechanical properties, including compressive strength and water absorption under load (AUL).
    We evaluate if P(AA/AM)/FA hydrogel whose additive quantity, proportion of fly ash and particle size is reasonablely applied to the grout and cement mortar as a self-curing agent. Then we researched hydration degree, cracking index, and setting time in grout. We calculated weight-loss, water retention,compressive strength, internal humidity, and drying shrinkage in cement mortar.
    The result indicate that P(AA/AM)/FA hydrogel in the optimum reaction condition, the water absorbency is 386 g/g in water, and 56, 26 g/g in 0.1M NaCl(aq) and 0.1M CaCl2(aq), repectively. The compressive strength is 47.5 (Kgf / cm2).
    When we add P(AA/AM)/FA hydrogel into mortar as self-curing reagent, the optimum dosage, particle size and proportion of fly ash is 0.2 wt%, 0.082 mm and 10 wt%, respectively, in this condition, improve the performance of weight-loss, compressive strength, internal humidity, drying shrinkage and craking formation. All the performance is better than the control group without P(AA/AM)/FA hydrogel.

    摘要 i Abstract iii 目錄 v 圖目錄 xii 表目錄 xvii 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 研究內容 2 第二章 文獻回顧 4 2-1 高吸水性水膠簡介 4 1. 親水基團對水的親和力 5 2. 水膠內部與溶液離子滲透壓差 5 3. 水膠的交聯密度 6 4. pH效應 7 5. 鹽水溶液效應 7 2-2 有機/無機複合水膠簡介 9 2-3飛灰簡介 10 2-4 水泥 11 2-4-1 波特蘭水泥之組成 11 2-4-2 水泥之水化 12 2-4-3 水泥漿水分存在形式 15 2-4-4 混凝土收縮變形的種類 16 2-5 混凝土的養護 18 2-5-1 外部養護(external curing) 19 2-5-2 內部養護(internal curing) 21 第三章 水膠之合成與試驗 23 3-1 實驗流程 23 3-2 實驗材料與實驗設備 24 3-2-1 藥品 24 3-2-2 實驗儀器 26 3-3 P(AA/AM)/FA水膠之合成 27 3-4 聚合物結構分析與鑑定 29 3-4-1 紅外光(IR)光譜分析 29 3-4-2 核磁共振 (1H-NMR) 光譜分析 30 3-4-3 電子顯微鏡 (JSM-6510) 表面結構 30 3-4-4 水膠吸水率之測量 31 3-4-5 水膠在不同pH值下吸水率 31 3-4-6 水膠在鹽水溶液吸水率 31 3-4-7 水膠在拌合水中的吸水率 31 3-4-8 水膠在Pore Solution中的吸水率 32 3-4-9 水膠抗壓強度之測量 32 3-4-10 水膠在抗壓強度下吸水率(AUL) 33 3-5 添加水膠的水泥漿之性質分析 34 3-5-1 水泥漿試體之拌製 34 3-5-2 水泥漿凝結時間測試 35 3-5-3 水泥漿圓盤裂縫測試 35 3-5-4 粉末X-ray繞射分析儀(XRD) 36 3-6 添加水膠的水泥砂漿之性質分析 37 3-6-1 水泥砂漿試體之拌製 37 3-6-2 水泥砂漿試體重量損失量之測量 40 3-6-3 水泥砂漿體內部濕度之測量 40 3-6-4 水泥砂漿試體抗壓強度之測量 41 3-6-5 水泥砂漿乾燥收縮之測量 41 第四章 結果與討論 43 4-1 聚合物之結構鑑定 43 4-1-1 P(AA/AM) 1H光譜 43 4-1-2 聚合物IR光譜 43 4-1-3 水膠表面形態鑑定 46 4-1-4 錠狀水膠吸水前後體積對照 49 4-2 反應條件對P(AA/AM)/FA水膠吸水率之影響 50 4-2-1 Fly Ash劑量對P(AA/AM)/FA水膠吸水率之影響 50 4-2-2起始劑劑量對P(AA/AM)/FA水膠吸水率之影響 52 4-2-3 交聯劑劑量對P(AA/AM)/FA水膠吸水率之影響 53 4-2-4 Fly Ash劑量對水膠密度之影響 55 4-3 不同吸水環境對P(AA/AM)/FA水膠吸水率之影響 56 4-3-1 鹽水溶液濃度對水膠吸水率之影響 56 4-3-2 pH值對水膠吸水率之影響 58 4-3-3 鹽水溶液中離子價數對水膠吸水率之影響 60 4-3-4 水膠在pore solution中的吸水率及保水率 62 4-3-5 水膠在拌合水中的吸水率 64 4-4 水膠機械性質 65 4-4-1 飛灰比例對水膠抗壓強度之影響 65 4-4-2 不同乘載壓力對水膠吸水率之影響 66 4-5 P(AA/AM)/FA水膠對水泥砂漿性質的影響 68 4-5-1 水膠劑量對水泥砂漿重量損失的影響 68 4-5-2 水膠之飛灰比例對水泥砂漿重量損失的影響 71 4-5-3 水膠劑量對水泥砂漿內部濕度的影響 73 4-5-4 水膠之飛灰比例對水泥砂漿內部濕度的影響 74 4-5-5 水膠劑量對水泥砂漿抗壓強度的影響 76 4-5-6 水膠之飛灰比例對水泥砂漿抗壓強度的影響 78 4-5-7 水膠劑量對水泥砂漿乾縮量的影響 80 4-5-8 水膠之飛灰比例對水泥砂漿乾縮量的影響 82 4-6 P(AA/AM)/FA水膠對水泥漿性質的影響 85 4-6-1 水膠劑量對水泥漿凝結時間的影響 85 4-6-2 水膠之飛灰比例對水泥漿凝結時間的影響 86 4-6-3 水膠劑量對水泥漿圓盤裂縫的影響 87 4-6-4 水膠飛灰比例對水泥漿圓盤裂縫的影響 91 4-6-5 XRD分析(1) 93 4-6-6 XRD分析(2) 96 4-6-7 DSC分析 99 4-7 水膠粒徑對水泥砂漿性質的影響 102 4-7-1 水膠粒徑對水泥砂漿重量損失的影響 102 4-7-2 水膠粒徑對水泥砂漿內部濕度的影響 106 4-7-3 水膠粒徑對水泥砂漿抗壓強度的影響 109 4-7-4 水膠粒徑對水泥砂漿乾縮量的影響 114 4-8 水膠粒徑對水泥漿性質的影響 117 4-8-1 水膠粒徑對水泥漿凝結時間的影響 117 4-8-2 水膠粒徑對水泥漿圓盤裂縫的影響 119 4-8-3 XRD分析(3) 122 第五章 結論 126 第六章 參考文獻 129

    1. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement and Concrete Research, 2002. 32(6): p. 973-978.
    2. Lura, P., O. Jensen, and S. Igarashi, Experimental observation of internal water curing of concrete. Materials and Structures, 2007. 40(2): p. 211-220.
    3. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials I. Principles and theoretical background, Cement and Concrete Research, 31 (2001) , 647-654
    4. V. D. Athawale, and V. Lele, Recent Trends in Hydrogels Based on Starch-graft-Acrylic Acid: A Review, Starch/Stärke, 53 (2001), 7–13.
    5. Chen, X.P., et al., Synthesis and properties of acrylic-based superabsorbent. Journal of Applied Polymer Science, 2004. 92(1): p. 619-624.
    6. Xu, S., et al., Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxyl groups (II). Journal of Applied Polymer Science, 2006. 101(3): p. 1995-1999.
    7. Baker, J., H. Blanch, and J. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. POLYMER-LONDON-, 1995. 36: p. 1061-1061.
    8. P. J. Flory, Principle of Polymer Chemistry, (1953)
    9. Y. M. Mohan, P. S. Keshava Murthy, J. Sreeramulu and K. Mohana Raju, Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Composed of Poly(Vinyl Alcohol) and Poly(Acrylamide-co-Sodium Methacrylate), J Appl Polym Sci, 98 (2005), 302–314.
    10. Pourjavadi, A., S. Barzegar, and G.R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate Polymers, 2006. 66(3): p. 386-395.
    11. Z. S. Liu and G. L. Rempel, Preparation of Superabsorbent Polymers by Crosslinking Acrylic Acid and Acrylamide Copolymers, J Appl Polym Sci 64 (1997)
    12. Y. Zheng, P. Li, J. Zhang, and A. Wang, Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, European Polymer Journal, 43 (2007), 1691–1698.
    13. A. Pourjavadi, A.M. Harzandi, and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal 40 (2004), 1363–1370.
    14. A. Pourjavadi, and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Ind. Eng. Chem. Res, 47 (2008), 9206–9213.
    15. P. Judeinstein, C. Sanchez, Journal of Materials Chemistry 1996, 6, 511-525.
    16. Yan Bao, Jianzhong Maa, Na Li, Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers, 84 (2011), 76-82.
    17. S.R. Shirsath , A.P. Patil , B.A. Bhanvase , S.H. Sonawane, Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. Journal of Environmental Chemical Engineering , 3 (2015), 1152-1162.
    18. Tao Wan , Lei Xiong, Runqiu Huang, Mengmeng Sun, Lili Qin, Xuemei Tan, Junyan Hu, Properties and structure of microcrystal muscovite composite superabsorbent. Journal of Wuhan University of Technology-Mater. Sci. Ed.29 (2014), 1302-1306.
    19. Seung-Taek Oh, Woo-Ram Kim, Sung-Hoon Kim, Yong-Chan Chung, and Jong-Shin Park, The Preparation of Polyurethane Foam Combined with pH-sensitive Alginate/Bentonite Hydrogel for Wound Dressings. Fibers and Polymers.12 (2011),159-165.
    20. Mahmoud Baniasadi and Majid Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel. Materials 2015, 8, 799-814
    21. Francisco H. A. Rodrigues, Antonio G. B. Pereira, Andre R. Fajardo, Edvani C. Muniz, Synthesis and Characterization of Chitosan-graft-Poly(acrylic acid)/Nontronite Hydrogel Composites Based on a Design of Experiments. J. APPL. POLYM. SCI. 2013, 128: 3480–3489
    22. Peng Liu, Liping Jiang, Longxiang Zhu, Jinshan Guo , Aiqin Wang, Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. Journal of Industrial and Engineering Chemistry, 23 (2015) 188–193
    23. Sudarshan and M. K. Surappa, Synthe i of fly ash particle reinforced A356 Al composites and thei cha acte ization. Mate ial Science and Engineering, 2008, 480, 117-124.
    24. 楊思廉, 工業化學概論, 高立 (1992).
    25. C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998), 87–101.
    26. S. Hanehara and K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cem. Concr. Res. 29 (1999), 1159–1165.
    27. 李文宏, 光纖量測技術於水泥質材料的熱膨脹系數與自體收縮之研究. 臺灣大學土木工程學研究所, 2004.
    28. Lura, P., O.M. Jensen, and K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 2003. 33(2): p. 223-232.
    29. Koenders, E.A.B. and K. van Breugel, Numerical modelling of autogenous shrinkage of hardening cement paste. Cement and Concrete Research, 1997. 27(10): p. 1489-1499.
    30. 混凝土的養護方式,國產實業公司。
    http://www.gdc.com.tw/modules/tinyd0/index.php?id=7#05
    31. Weber, S. and H.W. Reinhardt, A New Generation of High Performance Concrete: Concrete with Autogenous Curing. Advanced Cement Based Materials, 1997. 6(2): p. 59-68.
    32. Kovler, K. and S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 2006. 39(9): p. 827-847.
    33. Holt, E., Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 2005. 35(3): p. 464-472.
    34. Jensen, O.M. and P. Lura, Techniques and materials for internal water curing of concrete. Materials and Structures, 2006. 39(9): p.
    35. Henkensiefken, R., et al., Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement and Concrete Composites, 2009. 31(7): p. 427-437.
    36. Rha, C., et al., Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 1999. 29(2): p. 231-236.
    37. Xu, S., et al., Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly (acrylic acid-co-diallyldimethylammonium chloride). Journal of Applied Polymer Science, 2006. 102(2): p. 986-991.
    38. Mateusz Wyrzykowski , Pietro Lura, Controlling the coefficient of thermal expansion of cementitious materials – A new application for superabsorbent polymers, Cement & Concrete Composites .35, 2013, 49–58.
    39. H. Beushausen , M. Gillmer, The use of superabsorbent polymers to reduce cracking of bonded mortar overlays, Cement & Concrete Composites. 52, 2014, 1–8.
    40. H. Beushausen, M. Gillmer, M. Alexander, The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cement & Concrete Composites, 2014, 10
    41. A. Assmann, H.W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete. Cement and Concrete Research, 58, 2014, 179–185
    42. Mohammad J, Zohuriaan-Mehr and Kourosh Kabiri, Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 17(6), 2008, 451-477
    43. A. Li, J. Zhang and A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite, Polym. Adv. Technol. 16 (2005), 675–680.
    44. Bjontegaard, O., T. Hammer, and E. Sellevold. Cracking in high performance concrete before setting. 1998.
    45. Z. C. Grasley and D. A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Materials and Structures, 40 (2007), 311–317.
    46. Wenbo Wang, Yuru Kang and Aiqin Wang, Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites. Science and Technology of Advanced Materials, 11 (2010) .
    47. Wang, W. and A. Wang, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 2010. 80(4): p. 1028-1036.
    48. Lee, W.-F. and G.-H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science, 2001. 79(9): p. 1665-1674.
    49. Wei, J., et al., Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride). Journal of Applied Polymer Science, 2007. 103(1): p. 345-350.
    50. 佘勝雄, 利用二階段自由基共聚合製備酸鹼應答型水膠及性質探討. 中興大學化學工程研究所, 2002
    51. S. Xu, R. Wu, X. Huang, L. Cao and J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride), J. Appl. Polym. Sci. 102 (2006), 986-991.
    52. Kourosh Kabiri and M. J. Zohuriaan-Mehr, Superabsorbent Hydrogel Composites. Polymers for advanced technologies, 2003. 14: p. 438-444.
    53. 詹炳根, 丁以兵, 超強吸水劑對混凝土早期內部相對濕度的影響,合肥工業大學學報, 2006. 29(9): p. 1151-1155.
    54. 葉華, 趙建青, 張宇, 吸水樹脂水泥基材料自養護外加劑的研究,華南理工大學學報, 2003. 31(11): p. 41-44.
    55. P. Chindaprasirta, S. Homwuttiwong and V. Sirivivatnanon, Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research (2004) 34: p. 1087–1092.
    56. Mishra, P. C. Singh, V. K. Narang, K. K., and Singh, N.K.. Effect of carboxymethyl-cellulose on the properties ofcement. Materials and Engineering, A 357 (2003), 13–19.
    57. Zhihong, W. Yucuia, H., and Yuan, H.. Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 33 (2003), 1655–1658.
    58. R.K. Dhir, P.C. Hewlett, J.S. Lota, T.D. Dyer, An investigation into the feasibility of formulating ‘self-cure’ concrete, Materials and Structures, 27(1994) 606-615.
    59. 陳澤毅, 磁化水對飛灰應用於 CLSM 工程性質之研究, 國立雲林科技大學營建工程系, 碩士論文, 2009
    60. Fournier, B., and Bérubé, M.A., Alkali-Aggregate Reaction in
    Concrete: a Review of Basic Concepts and Engineering Implications,
    Canadian Journal of Civil Engineering, 2000. 27: p. 167-191.
    61. Jatuphon Tangpagasit, Raungrut Cheerarot, Chai Jaturapitakkul and Kraiwood Kiattikomol, Packing effect and pozzolanic reaction of fly ash in mortar. Cement and Concrete Research 35 (2005):p. 1145 – 1151.

    無法下載圖示 本全文未授權公開
    QR CODE