簡易檢索 / 詳目顯示

研究生: 蔣佳呈
Chiang, Chia-Cheng
論文名稱: 對土衛二恩塞勒達斯羽狀噴流之化學組成的 ALMA光譜研究
An ALMA Spectral Study of the Chemical Composition of Enceladus’Plume
指導教授: 管一政
Kuan, Yi-Jehng
口試委員: 管一政
Kuan, Yi-Jehng
葉永烜
Ip, Wing-Huen
曾瑋玲
Tseng, Wei-Ling
口試日期: 2022/08/26
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 79
中文關鍵詞: 土衛二恩塞勒達斯羽狀噴流地下海洋天文生物學
英文關鍵詞: Saturn II, Enceladus, plume, subsurface ocean, astrobiology
研究方法: 實驗設計法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202201699
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土衛二恩塞勒達斯是一個引人注目的冰冷世界,因為在其南極地區發現的水 蒸氣羽狀噴流令人信服地表明土衛二的冰殼下可能存在一個全球性的地下海洋。 再者,類似於地球上發現的海底熱泉也可能存在於土衛二的海洋和岩石核心之間。 因此,透過對土衛二外氣層和周圍 E 環的高角分辨率和高靈敏度分子譜線觀測 可以幫助我們更好地了解地下海洋的化學成分,從而為土衛二的適居性提供重要 資訊。
    我們於 2018 年 5 月和 6 月使用 ALMA 對土衛二進行了觀測。不幸的是,在 觀測過程中,為土衛二南極噴流來源的虎紋裂縫因背對我們使我們無法直接觀測 到。雖然如此在我們的 ALMA 觀測中依然發現六種分子,包括一氧化碳 (CO)、 氰化氫 (HCN)、二氧化氮 (NO2)、二氧化硫 (SO2)、甲醇 (CH3OH) 和水 (H2O)。 部分 E 環的連續發射光譜也被觀測到。而在土衛二以北我們也發現甲醇的訊號; 此外,當應用 uv-taper 的加權方法作圖時,甲醇的訊號會出現以類似環狀的結構 圍繞土衛二。於此次的觀測結果裡我們也發現,當恩塞勒達斯的頭半球 (Leading hemisphere) 朝向我們時,沿著視線方向看過去的分子相對於土衛二的運動速度 為紅移;而當為尾半球 (Trailing hemisphere) 時,分子的相對運動速度就會為藍移。
    除了發現分子的存在之外,我們也利用虎紋裂縫的表面溫度來計算分子的柱密度 (Tex = 180 K 用於計算水分子以外的分子的柱密度;Tex = 140 K 用於計算水分子的柱密度)。在計算的過程中,我們也假設這些觀測到的分子處於光學深度薄和局部熱力平衡的狀態。a) CO, 2.1 × 10^14 cm^-2; b) HCN (GND) and HCN (v2 = 1), 1.0 × 10^12 cm^-2 and 1.2 × 10^14 cm^-2, respectively; c) NO2, 2.8 × 10^15 cm^-2; d) SO2, 6.3 × 10^13 cm^-2; e) CH3OH (土衛二以北的訊號), 9.9 × 10^14 cm^-2; f) H2O1, 6.1 × 10^14 cm^-2。
    我們的 ALMA 結果很大程度上解決了關於 INMS 所偵測到的含有 28-Da 質量 粒子是主要為 CO 還是 N2 的長期爭論。再者,存在於海洋中的 HCN 和 CO 都是 天文生物學中重要的研究對象。最後,甲醇的發現2也對土衛二地下海洋的可居住 性研究具有重大且深遠的意義。

    Enceladus is a fascinating icy world because a global subsurface ocean may exist beneath its ice shell as suggested convincingly by the water vapor venting plume discovered in Enceladus’ south polar region. Hydrothermal systems similar to those found on Earth could also exist at the interface between Enceladus’ ocean and rocky core. Ground-based high angular resolution and high sensitivity molecular observations of Enceladus’ exosphere and the surrounding E ring thus may help us better understand the chemical composition of the subsurface ocean and hence provide vital information on determining whether Enceladus is habitable or not.
    We therefore conducted ground-based ALMA observations of Enceladus in 2018 May and June. Unfortunately, Tiger stripes were hidden from our direct view on the far side during our observing run. In our ALMA observations, we detected six molecular species, including CO, HCN, NO2, SO2, CH3OH and also H2O. Continuum emission from E-ring was also partially detected. Methanol emission was detected north of Enceladus; in addition, an extended ring-like structure unveiled by CH3OH emission around Enceladus becomes apparent when uv-taper was applied. We note that molecular lines detected toward the leading hemisphere of Enceladus all exhibit a positive, i.e. redshifted, velocity with respect to Enceladus’ rest frame. By contrast, molecular lines detected toward the trailing side of Enceladus all display a negative, i.e. blueshifted, velocity with respect to Enceladus.
    Adopting the surface temperatures of tiger stripes measured (Tex = 180 K for all molecular transitions except water; Tex = 140 K was employed for the H2O line), and assuming the observed molecular lines are optically thin and in local thermodynamics equilibrium (LTE), we derived column densities of detected molecular species: a) CO, 2.1 × 10^14 cm^-2; b) HCN (GND) and HCN (v2 = 1), 1.0 × 10^12 cm^-2 and 1.2 × 10^14 cm^-2, respectively; c) NO2, 2.8 × 10^15 cm^-2; d) SO2, 6.3 × 10^13 cm^-2; e) CH3OH (土衛二以北的訊號), 9.9 × 10^14 cm^-2; f) H2O1, 6.1 × 10^14 cm^-2.
    Our ALMA results also largely settle the long-lasting debate on the 28-Da mass particle revealed by INMS whether it is primarily CO or N2. Both HCN and CO are important ingredients in ocean astrobiologically. Our unforeseeable detection of methanol2, another essential component for life, has a vast implication in the study of habitability in Enceladus’ subsurface ocean.

    致謝i 摘要iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 1 1.1 Enceladus 1 1.2 Pre-Cassini Era: Enceladus and E Ring 4 1.3 Post-Cassini Era: Discovery of the Plume 5 1.4 The Gaseous Composition of the Plume 10 Chapter 2 16 2.1 Atacama Large Millimeter/submillimeter Array 16 2.2 Cycle-5 Observations of Enceladus in Band 9 16 2.3 Data Processing and Imaging Analysis 22 Chapter 3 26 3.1 Submm Continuum emission of Enceladus and E Ring 26 3.2 Spatial Distribution of Various Molecules 32 3.2.1 CO 34 3.2.2 NO2 36 3.2.3 SO2 39 3.2.4 HCN and HCN v2=1 42 3.2.5 CH3OH 47 3.2.6 H2O 52 3.3 Summary of Spectral Information for Each Molecule 56 Chapter 4 60 4.1 The Column Density of the Detected Molecules 60 4.2 CO 61 4.3 CH3OH 62 4.4 HCN 64 4.5 NO2 64 4.6 SO2 65 4.7 H2O 66 Chapter 5 68 Bibliography 71

    Anderson, S. E., Mousis, O., & Ronnet, T. (2021). Formation Conditions of Titan’s and Enceladus’s Building Blocks in Saturn’s Circumplanetary Disk. The Planetary Science Journal, 2(2), 50. https://doi.org/10.3847/psj/abe0ba
    Aiuppa, A., Federico, C., Giudice, G., Gurrieri, S., & Valenza, M. (2006). Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: Evidence from La Fossa Crater fumarolic field, Vulcano Island. Geophysical Research Letters, 33(21). https://doi.org/10.1029/2006gl027730
    Baum, W. A., Kreidl, T., Westphal, J. A., Danielson, G. E., Seidelmann, P. K., Pascu, D., & Currie, D. G. (1981). Saturn's E ring. I. CCD observations of March 1980. Icarus, 48(3), 540. https://doi.org/10.1016/0019-1035(81)90065-8
    Benner, S. A., Kim, H. J., & Biondi, E. (2019). Prebiotic Chemistry that Could Not Not Have Happened. Life, 9(4), 84. https://doi.org/10.3390/life9040084
    Beuthe, M., Rivoldini, A., & Trinh, A. (2016a). Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophysical Research Letters, 43(19), 10,088-10,096. https://doi.org/10.1002/2016gl070650
    Bockelee-Morvan, D. (1987). A model for the excitation of water in comets. Astronomy & Astrophysics, 181, 169–181. https://ui.adsabs.harvard.edu/abs/1987A%26A. . .181..169B/abstract
    Čadek, O., Tobie, G., Van Hoolst, T., Massé, M., Choblet, G., Lefèvre, A., Mitri, G., Baland, R. M., Běhounková, M., Bourgeois, O., & Trinh, A. (2016). Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 43(11), 5653–5660. https://doi.org/10.1002/2016gl068634
    Cassidy, T., & Johnson, R. (2010). Collisional spreading of Enceladus' neutral cloud, Icarus, 209(2). 696–703. https://doi.org/10.1016/j.icarus.2010.04.010
    Chen, K. Y., & Morris, J. C. (1972). Kinetics of oxidation of aqueous sulfide by oxygen. Environmental Science & Technology, 6(6), 529–537. https://doi.org/10.1021/es60065a008
    Christon, S. P., Hamilton, D. C., Plane, J. M. C., Mitchell, D. G., DiFabio, R. D., & Krimigis, S. M. (2015). Discovery of suprathermal Fe + in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 120(4), 2720–2738. https://doi.org/10.1002/2014ja020906
    Das, T., Ghule, S., & Vanka, K. (2019, August 7). Insights Into the Origin of Life: Did It Begin from HCN and H2O? ACS Central Science, 5(9), 1532–1540. https://doi.org/10.1021/acscentsci.9b00520
    Deschamps, F., Mousis, O., Sanchez-Valle, C., & Lunine, J. I. (2010). The Role Of Methanol In The Crystallization Of Titan's Primordial Ocean. The Astrophysical Journal, 724(2), 887–894. https://doi.org/10.1088/0004-637x/724/2/887
    Drabek-Maunder, E., Greaves, J., Fraser, H. J., Clements, D. L., & Alconcel, L. N. (2017). Ground-based detection of a cloud of methanol from Enceladus: when is a biomarker not a biomarker? International Journal of Astrobiology, 18(1), 25–32. https://doi.org/10.1017/s1473550417000428
    Dougherty, M. K., Khurana, K. K., Neubauer, F. M., Russell, C. T., Saur, J., Leisner, J. S., & Burton, M. E. (2006). Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer. Science, 311(5766), 1406–1409. https://doi.org/10.1126/science.1120985
    Esposito, L. W., Colwell, J. E., Larsen, K., McClintock, W. E., Stewart, A. I. F., Hallett, J. T., Shemansky, D. E., Ajello, J. M., Hansen, C. J., Hendrix, A. R., West, R. A., Keller, H. U., Korth, A., Pryor, W. R., Reulke, R., & Yung, Y. L. (2005). Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System. Science, 307(5713) 1251–1255. https://doi.org/10.1126/science.1105606
    Farmer, A. J. (2009). Saturn in hot water: Viscous evolution of the Enceladus torus. Icarus, 202(1), 280–286. https://doi.org/10.1016/j.icarus.2009.02.031
    Garrod, R., Hee Park, I., Caselli, P., & Herbst, E. (2006). Are gas-phase models of interstellar chemistry tenable? The case of methanol. Faraday Discussions, 133, 51. https://doi.org/10.1039/b516202e
    Glein, C. R., Zolotov, M. Y. & Shock, E. L. Liquid water vs. hydrogen cyanide on Enceladus. In American Geophysical Union, Fall Meeting, abstract #P23B- 1365 (2008) https://ui.adsabs.harvard.edu/abs/2008AGUFM.P23B1365G/abstract
    Glein, C. R., Postberg, F., & Vance, S. D. (2018). The Geochemistry of Enceladus: Composition and Controls. Enceladus and the Icy Moons of Saturn. https://doi.org/10.2458/azu_uapress_9780816537075-ch003
    Haff, P., Eviatar, A., & Siscoe, G. (1983). Ring and plasma: The enigmae of Enceladus. Icarus, 56(3), 426–438. https://doi.org/10.1016/0019-1035(83)90164-1
    Hansen, C. J., Esposito, L., Stewart, A. I. F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., & West, R. (2006). Enceladus' Water Vapor Plume. Science, 311(5766), 1422–1425. https://doi.org/10.1126/science.1121254
    Hansen, C. J., Shemansky, D. E., Esposito, L. W., Stewart, A. I. F., Lewis, B. R., Colwell, J. E., Hendrix, A. R., West, R. A., Waite, J. H., Teolis, B., & Magee, B. A. (2011). The composition and structure of the Enceladus plume. Geophysical Research Letters, 38(11), L11202. https://doi.org/10.1029/2011gl047415
    Hansen, C., Esposito, L., Colwell, J., Hendrix, A., Portyankina, G., Stewart, A., & West, R. (2020). The composition and structure of Enceladus' plume from the complete set of Cassini UVIS occultation observations. Icarus, 344, 113461. https://doi.org/10.1016/j.icarus.2019.113461
    Hartogh, P., Lellouch, E., Moreno, R., Bockelée-Morvan, D., Biver, N., Cassidy, T., Rengel, M., Jarchow, C., Cavalié, T., Crovisier, J., Helmich, F. P., & Kidger, M. (2011). Direct detection of the Enceladus water torus with Herschel. Astronomy & Astrophysics, 532, L2. https://doi.org/10.1051/0004-6361/201117377
    Hedman, M., Burns, J., Hamilton, D., & Showalter, M. (2012). The three-dimensional structure of Saturn's E ring. Icarus, 217(1), 322–338. https://doi.org/10.1016/j.icarus.2011.11.006
    Hemingway, D. J., & Matsuyama, I. (2017). Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere. Geophysical Research Letters, 44(15), 7695–7705. https://doi.org/10.1002/2017gl073334
    Hesse, M. A., Jordan, J. S., Vance, S. D., & Oza, A. V. (2022). Downward Oxidant Transport Through Europa's Ice Shell by Density‐Driven Brine Percolation. Geophysical Research Letters, 49(5). https://doi.org/10.1029/2021gl095416
    Higton, A., Jones, A., V., Clemmet, M., & Golding, E. (1999). Access to Chemistry (1st ed.). Royal Society of Chemistry.
    Hodyss, R., Parkinson, C. D., Johnson, P. V., Stern, J. V., Goguen, J. D., Yung, Y. L., & Kanik, I. (2009). Methanol on Enceladus. Geophysical Research Letters, 36(17). https://doi.org/10.1029/2009gl039336
    Hsu, H. W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., Juhász, A., Altobelli, N., Suzuki, K., Masaki, Y., Kuwatani, T., Tachibana, S., Sirono, S. I., Moragas-Klostermeyer, G., & Srama, R. (2015). Ongoing hydrothermal activities within Enceladus. Nature, 519(7542), 207–210. https://doi.org/10.1038/nature14262
    Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., Nimmo, F., Armstrong, J. W., Asmar, S. W., Ducci, M., & Tortora, P. (2014). The Gravity Field and Interior Structure of Enceladus. Science, 344(6179), 78–80. https://doi.org/10.1126/science.1250551
    Itikawa, Y. (2007). Molecular Processes in Plasmas: Collisions of Charged Particles with Molecules (Springer Series on Atomic, Optical, and Plasma Physics, 43) (2007th ed.). Springer.
    Jewitt, D., Senay, M., & Matthews, H. (1996). Observations of Carbon Monoxide in Comet Hale-Bopp. Science, 271(5252), 1110–1113. https://doi.org/10.1126/science.271.5252.1110
    Jurac, S., Johnson, R. E., & Richardson, J. D. (2001). Saturn’s E Ring and Production of the Neutral Torus. Icarus, 149(2), 384–396. https://doi.org/10.1006/icar.2000.6528
    Jurac, S., & Richardson, J. D. (2005). A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. Journal of Geophysical Research: Space Physics. https://doi.org/10.1029/2004ja010635
    Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable Zones around Main Sequence Stars. Icarus, 101(1), 108–128. https://doi.org/10.1006/icar.1993.1010
    Khawaja, N., Postberg, F., Hillier, J., Klenner, F., Kempf, S., Nölle, L., Reviol, R., Zou, Z., & Srama, R. (2019). Low-mass nitrogen-, oxygen bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society, 489(4), 5231–5243. https://doi.org/10.1093/mnras/stz2280
    Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., Livi, S., Roelof, E. C., Dandouras, J., Armstrong, T. P., Mauk, B. H., Paranicas, C., Brandt, P. C., Bolton, S., Cheng, A. F., Choo, T., Gloeckler, G., Hayes, J., Hsieh, K. C., Ip, W. H., Jaskulek, S., . . . Woch, J. (2005). Dynamics of Saturn’s Magnetosphere from MIMI During Cassini’s Orbital Insertion. Science, 307(5713), 1270–1273. https://doi.org/10.1126/science.1105978
    Kusakabe, M., Komoda, Y., Takano, B., & Abiko, T. (2000, April). Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ 34 S variations of dissolved bisulfate and elemental sulfur from active crater lakes. Journal of Volcanology and Geothermal Research, 97(1–4), 287–307. https://doi.org/10.1016/s0377-0273(99)00161-4
    Liszt, H. S., Wilson, R. W., Penzias, A. A., Jefferts, K. B., Wannier, P. G., & Solomon, P. M. (1974). CO and CS in the Orion Nebula. The Astrophysical Journal, 190, 557. https://doi.org/10.1086/152910
    Lucentini, I., Garcia, X., Vendrell, X., & Llorca, J. (2021). Review of the Decomposition of Ammonia to Generate Hydrogen. Industrial & Engineering Chemistry Research, 60(51), 18560–18611. https://doi.org/10.1021/acs.iecr.1c00843
    Magee, B. A., & Waite, J. H. (2017, March). Neutral Gas Composition of Enceladus' Plume - Model Parameter Insights from Cassini INMS. LPI Contribution No. 1964, id.2974.
    Matson, D. L., Castillo, J. C., Lunine, J., & Johnson, T. V. (2007). Enceladus' plume: Compositional evidence for a hot interior. Icarus, 187(2), 569–573. https://doi.org/10.1016/j.icarus.2006.10.016
    McKay, C. P., Davila, A., Glein, C. R., Hand, K., & Stockton, A. M. (2018). Enceladus Astrobiology, Habitability, and the Origin of Life. Enceladus and the Icy Moons of Saturn. https://doi.org/10.2458/azu_uapress_9780816537075-ch021
    Mitchell, C. J., Porco, C. C., & Weiss, J. W. (2015). TRACKING THE GEYSERS OF ENCELADUS INTO SATURN'S E RING. The Astronomical Journal, 149(5), 156. https://doi.org/10.1088/0004-6256/149/5/156
    Miyakawa, S., James Cleaves, H., & Miller, S. L. (2002). The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Origins of Life and Evolution of the Biosphere, 32(3), 195–208. https://doi.org/10.1023/a:1016514305984
    Mohammadi, E., Petera, L., Saeidfirozeh, H., Knížek, A., Kubelík, P., Dudžák, R., Krůs, M., Juha, L., Civiš, S., Coulon, R., Malina, O., Ugolotti, J., Ranc, V., Otyepka, M., ŠPoner, J., Ferus, M., & ŠPoner, J. E. (2020). Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chemistry – A European Journal, 26(52), 12075–12080. https://doi.org/10.1002/chem.202000323
    Neveu, M., Desch, S. J., & Castillo-Rogez, J. C. (2017). Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta, 212, 324–371. http://dx.doi.org/10.1016/j.gca.2017.06.023
    Olah, G. A., Mathew, T., Prakash, G. K. S., & Rasul, G. (2016). Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions. Journal of the American Chemical Society, 138(5), 1717–1722. https://doi.org/10.1021/jacs.6b00343
    Pang, K. D., Voge, C. C., Rhoads, J. W., & Ajello, J. M. (1984). The E ring of Saturn and satellite Enceladus. Journal of Geophysical Research, 89(B11), 9459. https://doi.org/10.1029/jb089ib11p09459
    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D., & Sutherland, J. D. (2015). Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nature Chemistry, 7(4), 301–307. https://doi.org/10.1038/nchem.2202
    Perry, M. E., Teolis, B., Smith, H. T., McNutt, R. L., Fletcher, G., Kasprzak, W., Magee, B., Mitchell, D. G., & Waite, J. H. (2010). Cassini INMS observations of neutral molecules in Saturn's E-ring. Journal of Geophysical Research: Space Physics, 115(A10), A10206. https://doi.org/10.1029/2010ja015248
    Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T. V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., . . . Squyres, S. (2006). Cassini Observes the Active South Pole of Enceladus. Science, 311(5766), 1393–1401. https://doi.org/10.1126/science.1123013
    Porco, C., DiNino, D., & Nimmo, F. (2014). How The Geysers, Tidal Stresses, And Thermal Emission Across The South Polar Terrain Of Enceladus Are Related. The Astronomical Journal, 148(3), 45. https://doi.org/10.1088/0004-6256/148/3/45
    Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011). A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474(7353), 620–622. https://doi.org/10.1038/nature10175
    Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C. R., Gudipati, M. S., Henderson, B. L., Hsu, H. W., Kempf, S., Klenner, F., Moragas-Klostermeyer, G., Magee, B., Nölle, L., Perry, M., Reviol, R., Schmidt, J., Srama, R., Stolz, F., Tobie, G., . . . Waite, J. H. (2018). Macromolecular organic compounds from the depths of Enceladus. Nature, 558(7711), 564–568. https://doi.org/10.1038/s41586 018-0246-4
    Postberg, F., Clark, R. N., Hansen, C. J., Coates, A. J., Dalle Ore, C. M., Scipioni, F., Hedman, M. M., & Waite, J. H. (2018). Plume and Surface Composition of Enceladus. Enceladus and the Icy Moons of Saturn. https://doi.org/10.2458/azu_uapress_9780816537075-ch007
    Roldan, A., Hollingsworth, N., Roffey, A., Islam, H. U., Goodall, J. B. M., Catlow, C. R. A., Darr, J. A., Bras, W., Sankar, G., Holt, K. B., Hogarth, G., & de Leeuw, N. H. (2015). Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chemical Communications, 51(35), 7501–7504. https://doi.org/10.1039/c5cc02078f
    Ruiz-Bermejo, M., Zorzano, M. P., & Osuna-Esteban, S. (2013). Simple Organics and Biomonomers Identified in HCN Polymers: An Overview. Life, 3(3), 421–448. https://doi.org/10.3390/life3030421
    Schwarz, K. R., Bergin, E. A., Cleeves, L. I., Blake, G. A., Zhang, K., Öberg, K. I., van Dishoeck, E. F., & Qi, C. (2016). The Radial Distribution Of H2and Co In Tw Hya As Revealed By Resolved Alma Observations Of Co Isotopologues. The Astrophysical Journal, 823(2), 91. https://doi.org/10.3847/0004-637x/823/2/91
    Shemansky, D. E., Matheson, P., Hall, D. T., Hu, H. Y., & Tripp, T. M. (1993). Detection of the hydroxyl radical in the Saturn magnetosphere. Nature, 363(6427), 329–331. https://doi.org/10.1038/363329a0
    Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., & Lopes, R. M. C. (2006). Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot. Science, 311(5766), 1401–1405. https://doi.org/10.1126/science.1121661
    Spencer, J. R., Howett, C. J. A., Verbiscer, A. J., Hurford, T. A., Segura, M. E., & Pearl, J. C. (2011b). Observations of thermal emission from the south pole of Enceladus in August 2010. EPSC-DPS Joint meeting 2011, 1630.
    Spencer, J. R., Nimmo, F., Ingersoll, Andrew P., Hurford, T. A., Kite, E. S., Rhoden, A. R., Schmidt, J. & Howett, C. J. A. 2018 Plume Origins and Plumbing: From Ocean to Surface. In Enceladus and the Icy Moons of Saturn (ed. Paul M. Schenk, Roger N. Clark, Carly J. A. Howett, Anne J. Verbiscer & J. Hunter Waite), pp. 163–174. Tucson, AZ: University of Arizona Press https://doi.org/10.2458/azu_uapress_9780816537075-ch008
    Smith, B. A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Cook, A. F., Cuzzi, J., Pollack, J. B., Suomi, V. E. (1982). A New Look at the Saturn System: The Voyager 2 Images. Science, 215(4532), 504–537. https://doi.org/10.1126/science.215.4532.504
    Smith, H., Johnson, R., Sittler, E., Shappirio, M., Reisenfeld, D., Tucker, O., Burger, M., Crary, F., McComas, D., & Young, D. (2007). Enceladus: The likely dominant nitrogen source in Saturn’s magnetosphere. Icarus, 188(2), 356–366. https://doi.org/10.1016/j.icarus.2006.12.007
    Smith, H. T., Shappirio, M., Johnson, R. E., Reisenfeld, D., Sittler, E. C., Crary, F. J., McComas, D. J., & Young, D. T. (2008). Enceladus: A potential source of ammonia products and molecular nitrogen for Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 113(A11), A11206. https://doi.org/10.1029/2008ja013352
    Smith, H. T., & Richardson, J. D. (2021). The 3D Structure of Saturn Magnetospheric Neutral Tori Produced by the Enceladus Plumes. Journal of Geophysical Research: Space Physics, 126(3). https://doi.org/10.1029/2020ja028775
    Teolis, B. D., Shi, J., & Baragiola, R. A. (2009). Formation, trapping, and ejection of radiolytic O2 from ion-irradiated water ice studied by sputter depth profiling. The Journal of Chemical Physics, 130(13), 134704. https://doi.org/10.1063/1.3091998
    Thomas, P., Tajeddine, R., Tiscareno, M., Burns, J., Joseph, J., Loredo, T., Helfenstein, P., & Porco, C. (2016). Enceladus's measured physical libration requires a global subsurface ocean. Icarus, 264, 37–47. https://doi.org/10.1016/j.icarus.2015.08.037
    Verbiscer, A., French, R., Showalter, M., & Helfenstein, P. (2007). Enceladus: Cosmic Graffiti Artist Caught in the Act. Science, 315(5813), 815. https://doi.org/10.1126/science.1134681
    Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., Block, B. P., Cravens, T. E., Fletcher, G. G., Ip, W. H., Luhmann, J. G., Mcnutt, R. L., Niemann, H. B., Parejko, J. K., Richards, J. E., Thorpe, R. L., Walter, E. M., & Yelle, R. V. (2004). The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Science Reviews, 114(1–4), 113–231. https://doi.org/10.1007/s11214-004-1408-2
    Waite, J. H., Combi, M. R., Ip, W. H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., & Tseng, W. L. (2006). Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 311(5766), 1419–1422. https://doi.org/10.1126/science.1121290 Waite Jr, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., Mousis, O., Young, D. T., Brockwell, T., Westlake, J., Nguyen, M. J., Teolis, B. D., Niemann, H. B., McNutt Jr, R. L., Perry, M., & Ip, W. H. (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460(7254), 487–490. https://doi.org/10.1038/nature08153
    Waite, J. H., Glein, C. R., Perryman, R. S., Teolis, B. D., Magee, B. A., Miller, G., Grimes, J., Perry, M. E., Miller, K. E., Bouquet, A., Lunine, J. I., Brockwell, T., & Bolton, S. J. (2017). Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 356(6334), 155–159. https://doi.org/10.1126/science.aai8703
    Walker, J. D., Chocron, S., Waite, J. H., & Brockwell, T. (2015). The Vaporization Threshold: Hypervelocity Impacts of Ice Grains into a Titanium Cassini Spacecraft Instrument Chamber. Procedia Engineering, 103, 628–635. https://doi.org/10.1016/j.proeng.2015.04.081
    Zolotov, M. Y. (2007). An oceanic composition on early and today's Enceladus. Geophysical Research Letters, 34(23), L23203. https://doi.org/10.1029/2007gl031234

    無法下載圖示 電子全文延後公開
    2027/09/26
    QR CODE