簡易檢索 / 詳目顯示

研究生: 陳信嘉
Shin-Chia Chen
論文名稱: 具自動新聞摘要處理之智慧型行動位置新聞資訊服務系統
Intelligent Location-based Mobile News Service System with Automatic News Summarization
指導教授: 洪欽銘
Hong, Chin-Ming
陳志銘
Chen, Chih-Ming
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 多文件摘要位置偵測行動裝置位置資訊服務
英文關鍵詞: Multi-Document Summariztion, location awareness, mobile device, Location-Based Service
論文種類: 學術論文
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線網路環境的蓬勃發展及行動裝置軟硬體技術精進下,無線行動資訊服務之相關應用也勢必如雨後春筍般出現,帶給人們更便利的生活。在行動資訊領域中,日愈重要的應用服務-『位置資訊服務系統』(Location-Based Service System)是透過偵測使用者的所在位置及結合相關位置資訊,即時提供使用者所需資訊的一種服務系統,以協助使用者取得位置相關有用資訊。
    然而,一個位置資訊服務系統開發,除了要先具備基本的服務與資料傳輸架構外,還須具備以下兩個要素:1.服務的資訊類型,關於生活上的資訊不外乎氣象、旅遊、新聞…等。雖然氣象與旅遊資訊可由特定的網站直接取得,但是要取得多文件的新聞摘要,則須另外處理。為此,本研究提出了一個基於模糊理論(Fuzzy Theorm)的多文件摘要(Multi-Document Summariztion)方法來產生同事件的多個文件的新聞摘要;2.用戶端的位置偵測(Location Awareness),當系統了解用戶端的位置後,才能提供位置相關的資訊。故本研究還提出了一個新的位置偵測分類器,藉由結合GPS(Golbal Positioning System)之經緯度座標信號來自動偵測用戶端地理位置。
    最後,本研究整合以上所提出的方法,以發展出「具自動新聞摘要處理之智慧型行動資訊服務系統」,來提供基於使用者地點的整合性資訊服務。根據實驗分別對文件摘要方法與位置偵測分類器做評估,在参數最佳化時,可產生81%良好與15%可接受的摘要品質,位置偵測分類器亦可達90%的正確率。因此,證明本研究提出的「具自動新聞摘要處理之智慧型行動資訊服務系統」具有實際應用的價值。

    Due to fast development of wireless network and mobile computing technologies, mobile information services make more convenient in terms of getting useful information in our dalily life. Mobile information service will become more and more important in the future. “Localcation-Based Service (LSB) System” in mobile service can sense a user’s position and integrate location information to individual users, thus helping users obtain the useful information. However, developing a Location-Based Service System must be based on information service and deliver structure with additional two elements: one is information type provider in server-side and another is location awareness in client-side. This study mainly focused on developing a Location-Based Service System which can provide location-based news with news summarization service to individual users. Therefore, this study proposed a novel multi-document summarization method based on fuzzy theorm to provie summarized news to mobile devices. Moreover, to sense user location precisely, the study also proposed a practicable location awareness classifier by aware GPS (Golbal Positioning System) signals to identify user’s position. Finally, the study itegrated the proposed multi-document summarization method and user location identification scheme to construct “Intelligent Location-based Mobile News Service System with Automatic News Summarization” in order to provide users about location information services. According to experimental results in Mutli-Document Summarization and user location identification, news summarization with good quality is up to 86%, the accuray rate of user location awareness classifier is up to 90%. Therefore, these experimental results can prove that the proposed “Intelligent Location-based Mobile News Service System with Automatic News Summarization” can be successfully applied for location-based services in real-world application.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 研究架構 3 第二章 相關文獻與相關理論探討 4 2.1位置服務系統 4 2.2文件摘要相關研究 6 2.2.1 自動化文件摘要技術的發展 7 2.2.2 自動化文件摘要技術相關研究工作 8 2.2.3 以文件集為基礎的摘要技術 10 2.2.4 以主題關係地圖(Text Relationship Map)為基礎的摘要技術 13 2.2.5 以語段模型(Discourse Model)為基礎的摘要技術 17 2.2.6 其他基礎之摘要技術 18 2.3 相關理論背景知識 22 2.3.1 中文斷詞處理 22 2.3.2 字詞之權重計算 23 2.3.3 向量空間模型 25 2.3.4 詞彙-文件矩陣 26 2.3.5 相似度計算 27 第三章 研究方法與系統架構 28 3.1 當地新聞摘要與資訊派送系統架構 28 3.2 網頁資訊擷取代理人(Crawler Agent) 30 3.3 新聞摘要處理代理人 31 3.3.1 處理新聞摘要流程 32 3.3.2 斷詞處理 34 3.3.3 摘要產生之流程 36 3.4 定位代理人 43 3.4.1地理資訊位置偵測法 43 3.4.2以機器學習為基礎的位置偵測法 44 第四章 實驗與分析 50 4.1 多文件摘要實驗結果分析與評估 50 4.2 各種演算法於位置偵測之比較 58 4.3 本系統之行動裝置使用者介面簡介 67 第五章 結論與未來發展 69 5.1 結論 69 5.2 未來發展 70 參考文獻 72 圖目錄 圖2-1 Paragraph Relationship Map 與其對應的Text Segmentation 15 圖2-2 計算Aggregate Similarity 的概念圖示 16 圖2-3 Vector representation of document space 25 圖2-4 詞彙-文件矩陣 26 圖3-1 位置服務系統架構Server 端 29 圖3-2 位置服務系統架構Client 端 30 圖3-3 HTML網頁原始碼 31 圖3-4 Google News 文件分類架構 33 圖3-5 新聞摘要處理流程 34 圖3-6 ECScanner斷詞系統 35 圖3-7 長度分數計算 37 圖3-8 地理資訊資料結構 44 圖3-9 台北市各區之經緯度座標中心點 46 圖3-10 以Average-KNN演算法對未知類別樣本的歸類 49 圖4-1 縣市邊緣 58 圖4-2 非縣市邊緣 58 圖4-3 類神經網路訊練樣本之隱藏層與MSE 62 圖4-4 類神經網路對縣市判斷 62 圖4-5 Naïve Bayesian Classifier 的縣市偵測 63 圖4-6 KNN與Average-KNN縣市邊緣偵測的正確率統計 64 圖4-7 KNN與Average-KNN整體縣市偵測的正確率統計 65 圖4-8 各類型分類器之整體縣市偵測的正確率 66 圖4-9 使用者所在的縣市 67 圖4-10 系統提供之資訊項目 67 圖4-11 當地的新聞標題 68 圖4-12 當地新聞與摘要評選 68 表目錄 表2-1 Local weight 24 表2-2 Global weight 24 表2-3 常見的相似度公式 27 表3-1 段落相似的關係表 38 表3-2 嘉義縣市樣本點 47 表4-1 實驗1.1專家評定摘要的結果 52 表4-2 實驗1.2專家評定摘要的結果 52 表4-3 11組權重向量之摘要品質統計 54 表4-4 摘要品質為Ok and Good出現在文件中的位置統計 54 表4-5 摘要範例 55 表4-6 短字數段落新聞文件範例 56 表4-7 長字數段落新聞文件範例 57 表4-8 縣市邊緣之測試樣本點 59 表4-9 非縣市邊緣判斷之測試樣本點 60 表4-10 經緯度的名義變數劃分 61 表4-11 SVM於縣市邊緣偵測 63 表4-12 SVM於非縣市邊緣偵測 64

    [1] 黃純敏、吳郁瑩,「網路文件自動摘要」,臺灣區網際網路研討會TANET’99,國立中山大學呈辦,1999。
    [2] 陳雅絹,基於Ontology之模糊代理人於中文新聞文件摘要技術之研究,私立長榮大學經營管理研究所碩士論文,2003,台南。
    [3] 蘇瑗(1996), “自動摘要法”, 中國圖書館學會會報第56期,pp.41~47.
    [4] Chen, H.H. and Huang, S.J. “A Summarization System for Chinese News from Multiple Sources,” Proceedings of 4th International Workshop on Information Retrieval with Asia Languages, pp.1-7, 1999.
    [5] C. C. Yang and F. L. Wang. “Automatic Summarization of Financial News Delivery on Mobile Devices”, In Proceedings of the ACM Conference on the World Wide Web (WWW’03), pp. 225–233, May 2003.
    [6] C. C. Yang and F. L. Wang. Fractal Summarization for Mobile Devices to Access Large Documents on the Web. In Proceedings of the ACM Conference on the World Wide Web (WWW’03), pp. 225–233, May 2003.
    [7] C-S Lee, S-M Guo, and Z-W Jian,“Weighted Fuzzy Ontology for Chinese e-News Summarization”, 2004 IEEE International Conference on Fuzzy Systems, pp. 843-848, 2004.
    [8] Chang-Shing Lee, Yea-Juan Chen, Zhi-Wei Jian, “A Fuzzy Ontology and Its Application to News Summarization”, IEEE Transactions on Systems, pp. 859–880,2005.
    [9] Chen, Y.-J,“Scalable summarization for Chinese text”. Master Dissertation”, Department of Computer Science, National Tsing Hua University, 2000.
    [10] Chen, H. H. and Lin, C. J., “A Multilingual News Summarizer,” Proceedings of 18th International Conference on Computational Linguistics, pp. 159-165, July -August 2000.
    [11] CKIP AutoTag, Available : http://godel.iis.sinica.edu.tw/CKIP/.
    [12] Cohen Rami, Raz Danny, “An open and modular approach for a context distribution system”,NOMS 2004 - IEEE/IPIP Network Operations and Management Symposium, vol. 9,no. 1, pp. 365-380, Apr 2004.
    [13] C. Aone, M. E. Okurowski, J. Gorlinsky, and B. Larsen, “A Trainable Summarizer with Knowledge Acquired from Robust NLP Techniques,” In I. Mani and M. Maybury ,eds, Advances in Automated Text Summarization, MIT Press, pp. 71-80, 1999.
    [14] D.R. Radev, and K.R.McKeown, “Generating Natural Language Summaries from Multiple On-Line Source”, Computational Linguistics, vol.24, No. 3, pp469-500 , 1998.
    [15] D.R., Radev, Jing, H. & Budzikowska, M., “Centroid-based Summarization of Multiple Documents: Sentence Extraction, Utility-based Evaluation, and User Studies”, Proceedings of Workshop on Summarization, ANLP/NAACL, pp. 21 - 29, 2000.
    [16] Dae-Young Choi, “Personalized local internet in the location-based mobile web search”, Decision Support Systems 43, 31– 45, 2007.
    [17] E. Hovy, and C. Y. Lin (1999), “Automated Text Summarization in SUMMARIST,” In I. Mani and M. Maybury , eds, Advances in Automated Text Summarization, MIT Press, pp. 81-94, 1999.
    [18] ECScanner, Available: http://dlll.nccu.edu.tw/~rank/ecscanner/
    [19] Goldstein,”Summarizing Text Documents: Sentences Selection and Documents: Sentences Selection and Evaluation Metrics”, Proceedings of SIGIR 1999, pp. 121-128.
    [20] G. Murray, S. Renals, J. Carletta, and J. Moore, “Evaluating automatic summaries of meeting recordings”, Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Workshopon Machine Translation and Summarization Evaluation (MTSE), June 2005.
    [21] Google News, Available: http://news.google.com.tw/
    [22] G. Salton, A. Singhal, M. Mitra, and C. Buckley, “Automatic Text Structuring and Summarization”, Information Processing & Management,Elsevier, Vol. 33, No. 2, pp. 193-207, 1997.
    [23] Hsin-Hsi Chen, June-Jei Kuo, Sheng-Jie Huang, Chuan-Jie Lin, Hung-Chia Wung, “A summarization system for Chinese news from multiple sources”, Journal of the American Society for Information Science and Technology, Vol. 54, No. 13, pp. 1224-1236, Nov. 2003.
    [24] Hsun-Hui Huang, Yau-Hwang Kuo and Horng-Chang Yang, “Fuzzy-Rough Set Aided Sentence Extraction Summarization”, The 1st International Conference on Innovative Computing, Information and Control, Sep 2006.
    [25] Hsun-Hui Huang, Yau-Hwang Kuo, “Key Sentences Extraction Guided by Domain Sense Knowledge for Automatic Text Summarization”, The 6th International Symposium on Advanced Intelligent Systems, Oct 2005.
    [26] Hsun-Hui Huang and Yau-Hwang Kuo, “Key Sentences Extraction for Automatic Chinese Text Summarization”, The 10th Conference on Artificial Intelligence and Applications, Dec 2005.
    [27] Hsun-Hui Huang, Yau-Hwang Kuo and Horng-Chang Yang, “Domain-Specific Extractive Summarization: A Fuzzy Logic and Rough Set Approach”, Proceedings of the 2nd International Conference on Innovative Computing, Information and Control, Sep 2007.
    [28] Hjelm, J., “Creating Location Services for the Wireless Web,” John Wiley & Sons, 2002.
    [29] I. Mani, and M. Maybury (1999), “Introduction,” Advances in Automated Text Summarization, MIT Press, pp. x-xv, 1999.
    [30] J.Kupiec, J.Pedersen, and F.Chen, “A Trainable Document Summarizer,” Proceeding of the 18th Annual International Conference on Research and Development in Information Retrieval, pp. 68–73,1995.
    [31] J. H. Kim, J. H. Kim, and D. Hwang, “Korean Text Summarization Using an Aggregate Similarity,” In Processings of the 5th International Workshop Information Retrieval with Asian Languages, ACM, 2000.
    [32] J. Han, and M. Kember, “Classifier Accuracy,” In Data Mining: Concepts and Techniques, pp. 323-324, 2001.
    [33] J. H. Kim, J. H. Kim, and D. Hwang, “Korean Text Summarization Using an Aggregate Similarity,” In Processings of the 5th International Workshop Information Retrieval with Asian Languages, ACM,2000.
    [34] Kupiec, J.M., Peterson, J., & Chen, F. “A Trainable Document Summarizer,” Proceeding of the 18th Annual International Conference on Research and Development in Information Retrieval, pp. 68–73, 1995.
    [35] Kathleen R., McKeown and Dragomir Radev. “Generating Summaries of Multiple News Articles,” Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 74-82, July 1995.
    [36] M. A. K. Halliday, and R. Hasan, “Cohesion in English,”Longman, London, 1976.
    [37] M. D. Rodríguez, J. Favela, E. A. Martínez, and M. A. Muñoz, “Location-Aware Access to Hospital Information and Services,” IEEE Transactions on Information Technology in Biomedicine, Vol. 8, No. 4, Decmber 2004
    [38] Po Hu,Tingting He,Donghong Ji,Meng Wang.A study of Chinese text summarization using adaptive clustering of paragraphs.Computer and Information Technology, 2004,1159~1164
    [39] R. Barzilay, and M. Elhadad, “Using Lexical Chains for Text Summarization,” In Processings of the Workshop on Intelligent Scalable TextSummarization, Madrid, Spain, August, 1997.
    [40] Rashid O., Mullins I., Coulton P., and Edwards R. “Extending Cyberspace:Location Based Games Using Cellular Phones,” ACM Computers in Entertainment, Vol 4, Issue 1, January, 2006.
    [41] Barzilay, R., McKeown, K. R., & Elhadad, M., “Information Fusion in the Context of Multi-Document Summarization,” Proceedings of the 37th Conference on Association forComputational Linguistics, pp. 550-557, 1999.
    [42]Shiyan Ou, Christopher S.G, “Multi-Document Summarization of News Articles Using an Event-Based Framework,” Aslib Proceeding, Vol.58 , pp197-217,2006.
    [43] S. H. Myaeng, and D. Jang, “Development and Evaluation of a Statistically Based Document System,” Advances in Automated Text Summarization, MIT Press, pp.61-70, 1999.
    [44] S. H. Myaeng, and D. Jang, “Development and Evaluation of a Statistically Based Document System,” Advances in Automated Text Summarization, MIT Press, pp.61-70, 1999.
    [45] S. Azzam, K. Humphreys, and R. Gaizauskas, “Using Coreference Chains for Text Summarization,” In Processings of the ACL'99 Workshop on Coreference and its Applications, June 1999.
    [46] Salton, G. and McGill, J. Introduction to Modern Information Retrieval. New York: Mc Graw- Hill Book Company, 1983.
    [47] Salton, G. Automatic Text Processing - The Transformation, Analysis, and Retrieval of Information by Computer, Addison-Wesley, 1989.
    [48] WordNet, Available: http://www.cogsci.princeton.edu/~wn/.
    [49] YOSHINO T,MUTA T,MUNEMORI J.”NAMBA: Location-Aware Collaboration System for Shopping and Meeting”[J].IEEE Transactions on Consumer Electronics, pp.48(3):470-47,20027.
    [50] Yuen-Hsien Tseng, “A News Content Summarizer for Chinese Cell Phones”, Proceedings of IEEE International Conference on Multimedia & Expo, July 6-8 2005
    [51]Y. Wu, James N.K Liu, K. Wang,“An Approach Towards English Automatic Abstraction,” Computational Linguistics & Chinese Language Processing, vol. 4, No. 1, pp.85-101,Feb 1999.
    [52] Y. Gong, and X. Liu, “Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis,” ACM SIGIR, September 2001.
    [53] Niedzwiadek, H. (2000) “Where’s the Value in Location Services?”, Available:http://www.jlocationservices.com/
    [54] urMap,Available:http://www.urmap.com/
    [55] Jahna Otterbacher and Dragomir Radev, “Fact-focused Novelty Detection: a Feasibility Study,” In Poster session, 29th Annual ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, August 2006.
    [56] LIBSVM, Available:http://www.csie.ntu.edu.tw/~cjlin/libsvm

    無法下載圖示 電子全文延後公開
    2061/01/01
    QR CODE