研究生: |
王宥盈 Wang, Yu-Ying |
---|---|
論文名稱: |
以擴增實境輔助國小學生學習測量與估測 Using Augmented Reality to Assist Elementary School Students in Learning Measurement and Estimation |
指導教授: |
吳正己
Wu, Cheng-Chih |
口試委員: |
吳正己
Wu, Cheng-Chih 陳志洪 Chen, Zhi-Hong 游志弘 Yu, Chih-Hung |
口試日期: | 2024/07/16 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 擴增實境 、估測與測量 、經驗學習 |
英文關鍵詞: | Augmented Reality, Estimation and Measurement, Experiential Learning |
研究方法: | 實驗設計法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401486 |
論文種類: | 學術論文 |
相關次數: | 點閱:90 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數與量是學習數學之基礎,學生應培養測量與估測能力,在學生學習經驗尚不足時,需藉生活情境引導學生實際操作以形成概念。然量感是教學課程上易忽略的一環,面積與體積的估測與測量較難在教學現場中呈現。本研究發展一套擴增實境工具輔助學生學習估測與測量,透過工具將抽象的概念視覺化、具體化。本研究採準實驗設計,實驗對象為北部某國小五年級學生,皆為常態編班,選取兩個班共45位學生為實驗組,使用擴增實境工具搭配課程學習單來學習測量與估測;另兩個班為對照組共46位學生,學生需自行製作估測需要的參考物,並使用參考物來學習測量與進行估測。兩組在學習內容、授課教師及教學流程均相同,並於學習活動結束後,收集學生的成就測驗、態度問卷等量化資料,據以分析整理實驗結果。
研究結果發現:(1)實驗組與對照組學生在學習成就並無顯著差異;(2)兩組學生之學習動機、態度在「體積估測」探究動機有顯著差異,實驗組較願意與同學一起討論,亦願意挑戰其他的估測題目,以及想學更快、更有效的估測方法;(3)實驗組學生在工具有用性與易用性整體滿意度高。推測學習成就未達顯著的原因可能為:本研究工具操作僅使用兩節課,故學生尚不熟悉平板操作,以及學生對體積認知概念尚有不足,應於學校數學課程學習體積的單元,對體積有一定的認知概念後,再進行擴增實境工具體驗。未來研究可進一步改善擴增實境工具,加入互動對話框引導學生進行估測或測量的步驟,以減少學生的認知負荷,並加入遊戲機制,提升學生繼續練習估測的動機。
Numbers and quantities are fundamental to learning mathematics, and students need to develop measurement and estimation skills. When students lack sufficient learning experiences, real-life situations should guide them in hands-on activities to form concepts. However, the sense of quantity is often overlooked in the curriculum. Interviews with fifth-grade teachers at a Taiwanese elementary school revealed challenges in teaching area, volume estimation, and measurement. Thus, this research developed an augmented reality (AR) tool to assist students in learning these concepts by visualizing and concretizing abstract ideas. This study used a quasi-experimental design with fifth-grade students from a northern Taiwanese elementary school. Two classes (45 students) formed the experimental group, using the AR tool and worksheets for learning. Two other classes (46 students) formed the control group, using self-made reference objects. The learning content, teachers, and processes were consistent across groups. Data from achievement tests and attitude questionnaires were collected and analyzed.
Findings include: (1) No significant difference in achievement between groups, although the experimental group scored higher on average post-tests; (2) Significant increase in motivation towards "volume estimation" in the experimental group, with students more willing to discuss and challenge estimation problems; (3) High satisfaction in the experimental group with the tool's perceived usefulness and ease of use. The lack of significant achievement might be due to the tool's limited use and students' unfamiliarity with tablets. Future research should improve the AR tool with interactive guides to reduce cognitive load and incorporate a game-like scoring mechanism to enhance motivation.
李鴻毅(2011)。應用擴增實境技術建構互動學習環境-以國立台灣科學教育館為例。國立臺灣師範大學碩士論文。臺灣博碩士論文知識加值系統。
林為光(2011)。不同虛擬實境多媒體設計輔助對國小學童體積概念學習效益之研究。國立臺中教育大學碩士論文,未出版,臺中市。
周菊美、張英傑(譯)(2005)。中小學數學科教材教法(原作者:J. A. Van de Walle 著)。台北市:五南出版。(原著出版年:2003)。
曹宗萍、周文忠(1998)。國小數學態度量表編製之研究。台北市立師範學院。
教育部(2018)。十二年國民教育課程綱要數學領域。臺北:教育部。
張淑怡(2004)。國小五年級學童容量概念之研究。國立台中教育大學數學教育研究所碩士論文,未出版,台中市。
黃幸美(2016)。學童估測長度、面積與體積的表現與策略使用之探討。教育科學研究期刊,61(3),131-162。
黃秋霞、楊志強(2020)。國小數學科互動式體積AR輔助學習軟體應用之探討。特殊教育發展期刊,(70),17-34。
甯平獻(2010)。數學教材教法。台北市:五南出版。
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
Billinghurst, M. (2002). Augmented Reality in Education. Seattle WA: New Horizons for Learning - Technology in Education.
Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63.Bright, G. W. (1976). Estimation as part of learning to measure. In D. Nelson & R. E. Reys (Eds.), Measurement in school mathematics. National Council of Teachers of Mathematics Yearbook (pp. 87-104). Reston, VA: National Council of Teachers of Mathematics.
Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and geographic information science, 44(3), 259-270.
Cowin, J. B. (2020). Digital Worlds and Transformative Learning: Google Expeditions, Google Arts and Culture, and the Merge Cube. International Research and Review, 10(1), 42–53.
Cuendet, Sébastien & Bonnard, Quentin & Do-Lenh, Son & Dillenbourg, Pierre. (2013). Designing augmented reality for the classroom. Computers & Education, 68, 557-569.
Department for Education. (2014). National curriculum in England: Mathematics programmes of study. Retrieved from https:// www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
Dünser, A., Steinbügl, K., Kaufmann, H., & Glück, J. (2006, July). Virtual and augmented reality as spatial ability training tools. In Proceedings of the 7th ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered HCI (pp. 125-132). ACM.
Estapa, A., & Nadolny, L. (2015). The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. Journal of STEM Education: Innovations and Research, 16(3), 40.
Hildreth, D. J. (1983). The use of strategies in estimating measurements. Arithmetic Teacher, 30(5), 50-54.
Huang, H.-M. E. (2020). Effects of Grade Level and Object Size on Students’ Measurement Estimation Performance. Eurasia Journal of Mathematics, Science and Technology Education, 16(12), em1923.
Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
Joram, E., Gabriele, A., Bertheau, M., Gelman, R., & Subrahmanyam, K. (2005). Children’s use of the reference point strategy for measurement estimation. Journal for Research in Mathematics Education, 36(1), 4-23.
Joram, E., Subrahmanyam, K., & Gelman, R. (1998). Measurement estimation: Learning to map the route from number to quantity and back. Review of Educational Research, 68, 413-419.
Kolb, D. A., & Wolfe, D. M. (1981). Professional education and career development: A cross sectional study of adaptive competencies in experimental learning. Lifelong learning and adult development project. Cleveland, OH: Department of Organizational Behavior Weatherhead School of Management. (ERIC Document Reproduction Service No. ED209493).
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.
Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Education Psychology Review, 22, 215-243.
Lin, H. C. K., Chen, M. C., & Chang, C. K. (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799-810.
Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., y Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.
Mayer, R. E. (2008). Learning and Instruction. Upper Saddle River, NJ: Pearson Education.
Micklo, Stephen J. (1999). Estimation It’s More than a Guess. Childhood Education, 75(3), 142-145.
Ministry of Education, MoE, Singapore. (2021). Curriculum Planning and Development Division. Mathematics Syllabus. Primary One to Six. Implementation starting with 2021 Primary One Cohort.
National Council of Teachers of Mathematics, NCTM. (2000). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics, NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
Purnama, J., Andrew, D., & Galinium, M. (2014, August). Geometry learning tool for elementary school using augmented reality. In Industrial Automation, Information and Communications Technology (IAICT), 2014 International Conference on (pp. 145-148). IEEE.
Reimer, K., & Moyer, P. S. (2005). Third graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
Ruwisch, S., Heid, M., & Weiher, D. F. (2015). Children’s use of strategies in estimating length and capacity. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of 39th psychology of mathematics education conference (Vol. 1, p. 246). Hobart, Australia: PME.
Sayed, N. E., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card an augmented reality solution for the education field. Computers & Education, 56(4), 1045-1061.
Smith, D. M., & Kolb, D. A. (1985). User guide for the learning-style inventory. Boston, MA: McBer and Company.
Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). Elementary and middle school mathematics. Teaching developmentally. New York, NY: Allyn & Bacon.
Wagner, D., & Davis, B. (2010). Feeling number: grounding number sense in a sense of quantity. Educational studies in Mathematics, 74, 39-51.
Woods, E., Billinghurst, M., Looser, J., Aldridge, G., Brown, D., Garrie, B., & Nelles, C. (2004, June). Augmenting the science centre and museum experience. In Proceedings of the 2nd international conference on Computer graphics and interactive techniques in Australasia and South East Asia (pp. 230-236). ACM.