研究生: |
楊東諺 Tung-Yen Yang |
---|---|
論文名稱: |
鐵心永磁同步線性伺服馬達應用於雙軸高精密伺服平臺之運動控制器設計及效能分析 Controller Design and Performances Analysis for Permanent Magnet Iron Core Synchronous Linear Motors in Two-axis Precision Platform |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 鐵心式永磁同步伺服線性馬達 、高精密定位控制平臺 、適應性步階迴歸滑模控制器 、小腦模型類神經網路 、干擾估測器 |
英文關鍵詞: | Permanent magnet iron core synchronous linear motor, High precise motion control platform, Adaptive back-stepping sliding mode controller, Cerebellar model articulation neural network controller, Disturbance observer |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主要目的為開發一套雙軸式高精密運動控制平臺。所使用之致動器為鐵芯式永磁同步伺服線性馬達。在雙軸同動之前,先對單軸進行磁推力及馬達系統的數學模型建模,而後利用數學模型進行控制器設計。在本研究中,首先設計控制器為步階迴歸滑模控制器(BSMC)、而後利用Lyapunov穩定理論,完成適應性步階迴歸滑模控制器(ABSMC),另外為了提高系統精度,分別導入兩種不同補償方式(1)加入一維小腦模型類神經控制器(1DCMAC) (2)加入干擾估測器(Disturbance Obsever)。
雙軸同步線性馬達在精密控制上面臨三大干擾分別為漣波效應(Ripple effect)、摩擦力(Friction)及雙軸間的同動耦合(Coupling)問題。因此在控制器的設計上,需要考量環境因素及干擾之補償,並藉由非線性控制理論、Lyapunov穩定理論,完成非線性控制器設計,以提高系統精密控制效能。
在精密運動平臺的應用上,不外乎精密定位及動態軌跡追蹤。本論文將著重探討在精密動態控制下的效能分析,即使環境中具有干擾存在,整體系統響應仍然保持著精密控制效果。
本研究所使用的永磁鐵芯式同步線性伺服馬達,為上銀公司(HIWIN)所生產,產品型號分別為LMS27(X軸)、LMS13(Y軸),其最大行程皆為200mm。光學尺為Renishaw公司之產品,產品型號為RGH22Y,其解析度為0.1μm。人機介面採用美商儀器公司(National Instrument)產品LabVIEW 2010 Professional Development System進行控制器程式撰寫及開發。
The main propose of this study is to develop a two-axes high precision motion control platform. The actuators of this platform are permanent magnet iron core synchronous linear motors (PMLSMs) respectively. Before exciting two-axes PMLSM simultaneously, we need to analyze the mathematical model of one-axis motor system. After that we can design the controller of one-axis motor by the model of system. In this study, at first we design backstepping sliding model controller (BSMC), and then using the Lyapuvon stable theorem to complete adaptive backstepping sliding mode controller (ABSMC). However, to increase the performance of precision, we introduce two kinds of method, (1) one-dimension cerebellar model articulation neural network controller (1DCMAC) (2)disturbance observer, to compensate the disturbances.
Two-axes precision motion control in linear motors are influenced three major disturbances which are ripple effect, friction, and coupling problem respectively. Therefore, compensating disturbances which causes by environment is necessary in the controller design procedures by non-linear and Lyapunov stable theorem to increase more precise control performance.
In the application of motion control of precision platform, PMLSM is usually applied to position or track. In this research we focus on the analysis of control performance in the dynamic tracking. Even the disturbances exist around environment, the control performance still enhance by controller design.
The permanent magnet iron core synchronous linear motors of this research are LMS27(X-axis)、LMS13(Y-axis) manufactured by HIWIN company. The maximum route of the motors are 200mm respectively. The linear scales are RGH22Y produced by Renishaw company and its resolution is 0.1μm. Human-machine interface utilizes LabVIEW 2010 Professional Development System to program code.
[1] 俞克維編著,控制系統分析與設計—使用MATLAB,新文京開發出版有限 公司,中華民國92年1月。
[2] Francesco Cupertino, David Naso, Ernesto Mininno and Biagio Turchiano, “Sliding-Mode Control With Double Boundary Layer for Robust Compensation of Payload Mass and Friction in Linear Motors”, IEEE Transaction on Industry Applications, Vol.45, no.5, pp.1688-1696, September/October, 2009.
[3] Tian Hua Liu, Yung Ching Lee, Yih Hua Chang, “Adaptive Controller Design for a Linear Motor Control System”, IEEE Transactions on Aerospace and Electronic Systems, Vol.40, no.2, Aprol 2004.
[4] D.L. Zhang, Y.P. Chen, Z.D. Zhou, W. Ai and X.D. Li, “Robust adaptive motion control of permanent magnet linear motors based on disturbance compensation”, IET Electr. Power Appl., pp.543-548, 2007.
[5] P.H. Shen and F.J. Lin, “Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system”, IEE Proc.-Electr. Power Appl., Vol. 152, no.5, September 2005.
[6] Fu Chuang Chen and Chih Horng Chang, “Practical Stability Issues in CMAC Neural Network Control Systems”, IEEE Transactions on Control Systems Technology, Vol.4, no.1, January 1996.
[7] L.J. Lin, H.-J. Hsieh and P.-H. Chou, “Tracking control of a two-axis motion system via a filtering-type sliding-mode control with radial basis function network”, IET Control Theory Appl., Vol.4, Iss.4, pp.655-671, 2010.
[8] Satoshi Komada, Muneaki Ishida, Kouhel Ohnishi and Takamasa Hori, “DISTURBANCE OBSERVER-BASED MOTION CONTROL OF DIRECT DRIVE MOTORS”, IEEE Transactions on Energy Conversion, Vol.6, No.3, September 1991.
[9] 鄭其原, “The Design and Implementation of a Linear Motor Driver based on Digital Signal Processor”, Feng Chia University, Master thesis, May 1993.
[10] Parviz Famouri, “Control of a Linear Permanent Magnet Brushless Dc Motor Via Exact Linearization Methods”, IEEE Transactions on Energy Convrsion, Vol.7, no.3, pp.544-551, September 1992.
[11] 盧建勳, “High Precision Motion Control and Design in Position platform for Linear Permanent-Magnet Iron Core Synchronous Motors”, National Taiwan Normal University, Master thesis, July 2012.
[12] Si Lu Chen, Kok Kiong Tan and Sunan Huang, “Friction Modeling and Compensation of Servomechanical Systems With Dual-Relay Feedback Approach”, IEEE Transactions on Control Systems Technology , Vol.17, no.6, pp.1295-1305, November 2009.
[13] Si Lu Chen, Kok Kiong Tan, Sunan Huang and Chek Sing Teo, “Modeling and Compensation of Ripples and Friction in Permanent-Magnet Linear Motor Using a Hysteretic Relay”, IEEE/ASME Transaction on Mechatronics, Vol.15, no.4, pp.586-594, August 2010.
[14] Faa-Jeng LIN, Kuo-Kai Shyu and Chih-Hong Lin, “Incremental Motion Control of Linear Synchronous Motor”, IEEE Transactions on Aerospace and Electronic Systems, Vol.38, no.3, pp.1011-1022, July 2002.
[15] W.-D. Chou, F.-J. Lin and K.K. Shyu, “Incremental motion control of an induction motor sevro drive via a genetic-algorithm based sliding mode controller”, IEE Proc.-Control Theory Appl., Vol.150, no.3, pp.209-220, May 2003.
[16] 張碩編著,自動控制系統,第五版,鼎茂圖書出版股份有限公司,台北市, 民國90年。
[17] 林俊良編著,控制系統數學,全華科技圖書股份有限公司,民國88年10月。
[18] 曾仲熙編著,控制器設計與模擬範例,東華書局,民國99年8月。
[19] 陳永平,張浚林編著,第二版,可變結構控制設計,全華科技圖書股份有限公司,民國91年9月。
[20] 林銘湧, “A Study of Friction Force Analysis and Compensation of Precision Servo Control System”, Feng Chia University, Master thesis, July 1992.
[21] Addisu Tesfaye, Ho Seong Lee and Masayoshi Tomizuka, “A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems”, IEEE/ASME Transactions on Mechatronics, Vol.5, no.1, March 2000.
[22] K.K. Tan, S.N. Huang and T.H. Lee, “Robust Adaptive Numerical Compensation for Friction and Force Ripple in Permanent-Magnet Linear Motors”, IEEE Transactions on Magnetics, Vol.38, no.1, January 2002.
[23] Si-Lu Chen, Kok Kiong Tan and Sunan Huang, “Friction Modeling and Compensation of Servomechanical Systems With Dual-Relay Feedback Approach”, IEEE Transactions on Control Systems Technology, Vol.17, no.6, pp.1295-1305, November 2009.
[24] Ying-Shieh Kung , “Design and Implementation of a High-Performance PMLSM Drives Using DSP Chip”, IEEE Transactions on Industrial Electronics, Vol.55, no.3, pp.1341-1351, March 2008.
[25] Chiu-Keng Lai and Kuo-Kai Shyu, “A Novel Motor Drive Design for Incremental Motion System via Sliding-Mode Control Method”, IEEE Transactions on Industrial Electronics, Vol.52, no.2, pp.499-507 April 2005.
[26] S.-Y. Wang, C.-L. Tseng and S.-C. Chen, “Adaptive fuzzy cerebellar model articulation control for switched reluctance motor drive”, IET Electr. Power Appl., Vol.6, Iss.3, pp.190-202. 2012.
[27] Luca Bascetta, Paolo Rocco and Gianantonio Magnani, “Force Ripple Compensation in Linear Motors Based on Closed-Loop Position-Dependent Identification”, IEEE/ASME Transactions on Mechatronics, Vol.15, no.3, pp.349-359. June 2010.
[28] Zheng Chen, Bin Yao and Qingfeng Wang, “Adaptive Robust Precision Motion Control of Linear Motors With Integrated Compensation of Nonlinearities and Bearing Flexible Modes”, IEEE Transactions on Industrial Informatics, Vol.9, no.2, pp.965-973. May 2013.