簡易檢索 / 詳目顯示

研究生: 莊政霖
Cheng-Lin Chuang
論文名稱: 劍尖槍鎖管發光器官內共生發光細菌之鑑定及特性分析研究
Identification and characterization of the symbiotic bioluminescent bacteria from the light organ of swordtip squid [Uroteuthis (Photololigo) edulis]
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 135
中文關鍵詞: 鎖管發光器官發光細菌共生生物發光生長曲線
英文關鍵詞: Loliginidae, light organ, bioluminescent bacteria, symbiosis, bioluminescence, growth curve
論文種類: 學術論文
相關次數: 點閱:253下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人研究 (Fukasawa & Dunlap, 1986) 指出共生於劍尖槍鎖管 [Uroteuthis (Photololigo) edulis] 發光器官內的發光細菌為Photobacterium leiognathi,然而本研究有新的發現。本研究從臺灣北部海域釣取劍尖槍鎖管,並就其發光器官內的共生細菌進行基因、生理和生化特性的探討。「16S rDNA」和「luxF」兩種基因的序列比對和特徵分析的結果顯示,25株分離自五尾劍尖槍鎖管的發光細菌中,有24株為Photobacterium mandapamensis,另外1株為P. leiognathi。因此,劍尖槍鎖管發光器官內的共生細菌應大多數為P. mandapamensis,僅少數發光器官內有P. mandapamensis和P. leiognathi同時共生 (cosymbiosis) 的情形。本研究分離的24株P. mandapamensis中,有7株的發光基因操縱組 (lux operon) 呈現部分雙套 (merodiploid) 之情形,這些菌株也對生活環境的「溫度」和「鹽度」因子有差異性的表現,而發光強度上更出現有1~60倍的差異。根據這些基因變異及生理、生化特性的差別,本研究推測P. mandapamensis與劍尖槍鎖管建立共生關係的初始,是由多個已具變異特性的菌株由海水中進入發光器官內拓殖,而非僅由單一菌株進入拓殖的情形。此外,本研究也發現除了基因型的差異之外,某些生理和生化特性的差異也可被應用於區分親緣關係接近的P. mandapamensis和P. leiognathi二菌種,包括P. mandapamensis可於含7% NaCl的培養液中生長,但P. leiognathi則否;P. mandapamensis的離胺酸去羧酶 (lysine decarboxylase) 測試呈陰性反應,而P. leiognathi則呈陽性反應;P. mandapamensis具有同化蘋果酸 (malate) 的能力,而P. leiognathi則否。而本研究所建立之發光細菌的簡易、準確生長測量方法,更可成為其他發光細菌研究的重要研究方法參考。

    The previous study (Fukasawa & Dunlap, 1986) identified the bioluminescent bacteria that symbiosed in the light organ of swordtip squids [Uroteuthis (Photololigo) edulis] is Photobacterium leiognathi. However, the current study proposes a contradictory identification. In our study, 25 strains of symbiotic bacteria were isolated from the light organs of five swordtip squids collected off the coast of north Taiwan. Among these 25 isolates, 24 were identified to be Photobacterium mandapamensis, while the rest one being P. leiognathi, based upon the results of comparative analyses of the 16S rDNA and the luxF gene. Therefore, the predominant bacterial symbiont of swordtip squid should be P. mandapamensis, and only in rare cases that both P. mandapamensis and P. leiognathi might be cosymbiosed within the same light organ. Since we have observed among the 24 P. mandapamensis isolates some featured differences of genetic, physiological, and biochemical characteristics, it is hypothesized that polyclonal bacteria may have entered the light organ from the sea water during its early stage of development. Moreover, the current studies unraveled some physiological and biochemical features that can be employed to distinguish the two close-related bacterial species of P. mandapamensis and P. leiognathi . The current studies have also developed a simple and accurate photometric method for measuring the growth of luminescent bacteria.

    摘要 1 Abstract 2 壹、緒論 3 一、生物發光 (bioluminescence) 3 二、生物發光的機制 4 三、生物發光的可能功用 6 (1)、避免被捕食 (predator avoidance) 6 (2)、吸引獵物 (prey attraction) 7 (3)、傳遞訊息 (intraspecific communication)、繁殖 (reproduction) 8 四、發光細菌 (bioluminescent bacteria) 8 五、發光細菌的發光基因操縱組 [lux operon, luxCDAB(F)EG] 11 六、常見海洋發光生物的研究模式系統 (model system) 12 七、臺灣附近海域的鎖管科 (Loliginidae) 動物 18 八、劍尖槍鎖管 [Uroteuthis (Photololigo) edulis] 21 九、研究目的 22 貳、研究材料與方法 23 一、實驗動物的採集與鑑定 23 (1)、夜釣鎖管 23 (2)、鎖管物種的鑑定 23 二、鎖管之共生發光細菌的分離、純化與保存 23 (1)、發光細菌的分離與純化 23 (2)、發光細菌之菌種保存 24 (3)、標準菌株 24 三、16S ribosomal RNA (16S rRNA) 的基因 (16S rDNA) 分析 25 (1)、聚合酶連鎖反應 (polymerase chain reaction, PCR) 25 (2)、限制酵素 (restriction endonucleases) 切割反應 26 (3)、DNA電泳分析 27 (4)、定序分析 28 四、luxF基因的分析 28 (1)、PCR反應 28 (2)、定序分析 30 五、劍尖槍鎖管共生發光細菌的生長曲線 (growth curve) 測定 30 (1)、OD700與細菌密度 [colony forming unit (CFU)/ml] 的關係 30 (2)、溫度對細菌生長曲線的影響 32 (3)、鹽度對細菌生長曲線的影響 32 (4)、兩種劍尖槍鎖管共生發光細菌的生長相容性測試 33 (5)、統計分析 34 六、生化特性測試 34 七、發光特性分析 35 (1)、發光波長範圍測定 35 (2)、發光強度測定 35 八、劍尖槍鎖管共生發光細菌的屬性分析及形態觀察 36 (1)、革蘭氏陰、陽性菌的鑑定 36 (2)、穿透式電子顯微鏡 (transmission electron microscopy, TEM) 觀察 36 參、結果 38 一、實驗動物的採集與鑑定 38 二、劍尖槍鎖管之共生發光細菌的分離 43 三、共生發光細菌的16S rDNA分析 47 (1)、限制酵素切割圖譜 47 (2)、基因定序分析 51 四、luxF基因的分析 58 (1)、PCR檢測 58 (2)、PCR產物定序分析 66 五、共生發光細菌的生長特性分析 74 (1)、OD700與細菌密度 [colony forming unit (CFU)/ml] 的關係 74 (2)、溫度對共生發光細菌生長的影響 78 (3)、鹽度對共生發光細菌生長的影響 83 六、共生發光細菌的生化特性分析 90 七、共生發光細菌的發光特性分析 92 (1)、發光波長範圍測定 92 (2)、發光強度測定 95 八、共生發光細菌的顯微觀察結果 98 九、不同共生發光細菌的相容性測試 102 肆、討論 104 一、劍尖槍鎖管發光器官內共生發光細菌的鑑定 105 二、部分劍尖槍鎖管的發光器官內可能同時共生 (cosymbiosis) 著P. mandapamensis以及P. leiognathi兩菌種 110 三、P. mandapamensis的發光基因操縱組呈現部分雙套 (merodiploidy) 之情形 112 四、劍尖槍鎖管發光器官內共生的P. mandapamensis,其基因型與表現型特徵具有多樣性 113 五、劍尖槍鎖管發光器官內共生的發光細菌,其發光強度、生長情況具有差異性 114 六、以OD讀值來估算發光細菌之數量,必須先考量菌株的發光波長特性及菌株間散射光線的能力是否相同 115 七、結論 116 參考文獻 118 附錄 125 附錄一、NBSA培養基及NBS培養液的製備 125 附錄二、luxF基因檢測產物序列比對 (BLAST) 結果 126 附錄三、中英對照表 129

    Alexeyev DO (1992) The systematic position of bioluminescent squids of family Loliginidae (Cephalopoda, Myopsida). Zoologichesky Zhurnal 71, 12-23.

    Arnold JM, Singly CT & Williams-Arnold LD (1972) Embryonic development and post-hatching survival of the sepiolid squid Euprymna scolopes under laboratory conditions. The Veliger 14, 361-364.

    Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL, De Vos P & Dunlap PV (2007a) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. International Journal of Systematic and Evolutionary Microbiology 57, 2073-2078.

    Ast JC & Dunlap PV (2004) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Archives of Microbiology 181, 352-361.

    Ast JC, Urbanczyk H & Dunlap PV (2007b) Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. Journal of Bacteriology 189, 6148-6158.

    Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ & Rayment I (1995) Structure of bacterial luciferase. Current Opinion in Structural Biology 5, 798-809.

    Bennasar A, Guasp C & Lalucat J (1998) Molecular methods for the detection and identification of Pseudomonas stutzeri in pure culture and environmental samples. Microbial Ecology 35, 22-33.

    Boettcher KJ, Ruby EG & McFallNgai MJ (1996) Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology 179, 65-73.

    Boisvert H, Chatelain R & Bassot JM (1967) Étude d'un Photobacterium isolé de l'organe lumineux de poissons Leiognathidae. Ann Inst Pasteur Paris 112, 520-524.

    Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Applied and Environmental Microbiology 44, 992-993.

    Cappuccino JG & Sherman N (2005) Microbiology: a laboratory manual, 7th ed. San Francisco: Benjamin Cummings.

    Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17, 840-862.

    Desjardin DE, Oliveira AG & Stevani CV (2008) Fungi bioluminescence revisited. Photochemical & Photobiological Sciences 7, 170-182.

    Dunlap PV (2009) Bioluminescence, microbial, pp. 45-61. In M. Schaechter (ed.), Encyclopedia of Microbiology., 3rd ed. Oxford: Elsevier.

    Dunlap PV & Nakamura M (2011) Functional morphology of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae), a bacterially luminous coral reef fish. Journal of Morphology, (in press).

    Fabbro C, Cataletto B & Del Negro P (2010) Detection of pathogenic Vibrio parahaemolyticus through biochemical and molecular-based methodologies in coastal waters of the Gulf of Trieste (North Adriatic Sea). Fems Microbiology Letters 307, 158-164.

    Fidopiastis PM, von Boletzky S & Ruby EG (1998) A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. Journal of Bacteriology 180, 59-64.

    Fukasawa S & Dunlap PV (1986) Identification of luminous bacteria isolated from the light organ of the squid, Doryteuthis kensaki. Agricultural and Biological Chemistry 50, 1645-1646.

    Garrity GM, Brenner DJ, Krieg NR & Staley JT (2005) Bergey's manual of systematic bacteriology, volume 2: the Proteobacteria, part B: the Gammaproteobacteria, 2nd ed. Boston: Springer.

    Guerrero-Ferreira RC & Nishiguchi MK (2007) Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 23, 497-506.

    Guerrero-Ferreira RC & Nishiguchi MK (2009) Ultrastructure of light organs of loliginid squids and their bacterial symbionts: a novel model system for the study of marine symbioses. Vie Milieu 59, 307-313.

    Haddock SH, Moline MA & Case JF (2010) Bioluminescence in the sea. Annual Review of Marine Science 2, 443-493.

    Hartline DK, Buskey EJ & Lenz PH (1999) Rapid jumps and bioluminescence elicited by controlled hydrodynamic stimuli in a mesopelagic copepod, Pleuromamma xiphias. Biological Bulletin 197, 132-143.

    Hastings JW (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173, 5-11.

    Hendrie MS, Hodgkiss W & Shewan JM (1970) The identification, taxonomy and classification of luminous bacteria. Journal of General Microbiology 64, 151-169.

    Herring PJ (2000) Species abundance, sexual encounter and bioluminescent signalling in the deep sea. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355, 1273-1276.

    Hopkins TL, Sutton TT & Lancraft TM (1996) The trophic structure and predation impact of a low latitude midwater fish assemblage. Progress in Oceanography 38, 205-239.

    Inouye S (2010) Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cellular and Molecular Life Sciences 67, 387-404.

    Johnsen S, Balser EJ, Fisher EC & Widder EA (1999a) Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). Biological Bulletin 197, 26-39.

    Johnsen S, Balser EJ & Widder EA (1999b) Light-emitting suckers in an octopus. Nature 398, 113-114.

    Jones BW & Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Marine Biology 144, 1151-1155.

    Jones K, Hibbert F & Keenan M (1999) Glowing jellyfish, luminescence and a molecule called coelenterazine. Trends in Biotechnology 17, 477-481.

    Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S, Endo H, Nakamura M & Dunlap PV (2007) Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of "Photobacterium mandapamensis". Applied and Environmental Microbiology 73, 3173-3182.

    Kendall JM & Badminton MN (1998) Aequorea victoria bioluminescence moves into an exciting new era. Trends in Biotechnology 16, 216-224.

    Kita-Tsukamoto K, Oyaizu H, Nanba K & Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. International Journal of Systematic Bacteriology 43, 8-19.

    Kita-Tsukamoto K, Wada M, Yao K, Kamiya A, Yoshizawa S, Uchiyama N & Kogure K (2006) Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis. Fems Microbiology Letters 256, 298-303.

    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE & McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186-1188.

    Lall AB, Ventura DSF, Bechara EJH, de Souza JM, Colepicolo-Neto P & Viviani VR (2000) Spectral correspondence between visual spectral sensitivity and bioluminescence emission spectra in the click beetle Pyrophorus punctatissimus (Coleoptera: Elateridae). Journal of Insect Physiology 46, 1137-1141.

    Liao CH, Lee MA, Lan YC & Lee KT (2006) The temporal and spatial change in position of squid fishing ground in relation to oceanic features in the northeastern waters of Taiwan. Journal of the Fisheries Society of Taiwan 33, 99-113.

    MacDonell MT, Singleton FL & Hood MA (1982) Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. Applied and Environmental Microbiology 44, 423-427.

    McElroy WD & Strehler BL (1954) Bioluminescence. Bacteriological Reviews 18, 177-194.

    McFall-Ngai MJ (2008) Hawaiian bobtail squid. Current Biology 18, R1043-1044.

    McFall-Ngai MJ & Montgomery MK (1990) The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biological Bulletin 179, 332-339.

    McFall-Ngai MJ & Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254, 1491-1494.

    Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiological Reviews 55, 123-142.

    Montgomery MK & McFall-Ngai MJ (1993) Embryonic development of the light organ of the sepiolid squid Euprymna scolopes Berry. Biological Bulletin 184, 296-308.

    Montgomery MK & McFall-Ngai MJ (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120, 1719-1729.

    Montgomery MK & McFall-Ngai MJ (1998) Late postembryonic development of the symbiotic light organ of Euprymna scolopes (Cephalopoda: Sepiolidae). Biological Bulletin 195, 326-336.

    Nishiguchi MK (2000) Temperature affects species distribution in symbiotic populations of Vibrio spp. Applied and Environmental Microbiology 66, 3550-3555.

    Nishiguchi MK (2002) Host-symbiont recognition in the environmentally transmitted sepiolid squid-Vibrio mutualism. Microbial Ecology 44, 10-18.

    O'Hara PB, Engelson C & Peter WS (2005) Turning on the light: lessons from luminescence. Journal of Chemical Education 82, 49-52.

    Park YD, Baik KS, Seong CN, Bae KS, Kim S & Chun J (2006) Photobacterium ganghwense sp. nov., a halophilic bacterium isolated from sea water. International Journal of Systematic and Evolutionary Microbiology 56, 745-749.

    Pringgenies D & Jorgensen JM (1994) Morphology of the luminous organ of the squid Loligo duvauceli d'Orbigny, 1839. Acta Zoologica 75, 305-309.

    Reichelt JL & Baumann P (1975) Photobacterium mandapamensis Hendrie et al., a later subjective synonym of Photobacterium leiognathi Boisvert et al. International Journal of Systematic Bacteriology 25, 208-209.

    Roper CFE, Sweeney MJ & Nauen CE (1984) FAO species catalogue. Vol. 3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fisheries Synopsis 3, 79-89.

    Ruby EG (2008) Symbiotic conversations are revealed under genetic interrogation. Nature Reviews Microbiology 6, 752-762.

    Ruimy R, Breittmayer V, Elbaze P, Lafay B, Boussemart O, Gauthier M & Christen R (1994) Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. International Journal of Systematic Bacteriology 44, 416-426.

    Sato Y & Sasaki S (2006) Control of the bioluminescence starting time by inoculated cell density. Analytical Sciences 22, 1237-1239.

    Sato Y & Sasaki S (2008) Observation of oscillation in bacterial luminescence. Analytical Sciences 24, 423-425.

    Seo HJ, Bae SS, Lee JH & Kim SJ (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. International Journal of Systematic and Evolutionary Microbiology 55, 1661-1666.

    Singley CT (1983) Euprymna scolopes in cephalopod life cycles. Academic Press: London 1, 69-74.

    Sivinski JM (1981) Arthropods attracted to luminous fungi. Psyche 88, 383-390.

    Sivinski JM (1998) Phototropism, bioluminescence, and the Diptera. Florida Entomologist 81, 282-292.

    Soto W, Gutierrez J, Remmenga MD & Nishiguchi MK (2009) Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microbial Ecology 57, 140-150.

    Sung ND & Lee CY (2004) Coregulation of lux genes and riboflavin genes in bioluminescent bacteria of Photobacterium phosphoreum. The Journal of Microbiology 42, 194-199.

    Sycuro LK, Ruby EG & McFall-Ngai M (2006) Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. Journal of Morphology 267, 555-568.

    Thyssen A, Grisez L, van Houdt R & Ollevier F (1998) Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. International Journal of Systematic Bacteriology 48, 1145-1151.

    Urbanczyk H, Ast JC, Kaeding AJ, Oliver JD & Dunlap PV (2008) Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. Journal of Bacteriology 190, 3494-3504.

    Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences 59, 1833-1850.

    Wada M, Kamiya A, Uchiyama N, Yoshizawa S, Kita-Tsukamoto K, Ikejima K, Yu R, Imada C, Karatani H, Mizuno N, Suzuki Y, Nishida M & Kogure K (2006) LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis. Fems Microbiology Letters 260, 186-192.

    Wei SL & Young RE (1989) Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes. Marine Biology 103, 541-546.

    Wollenberg MS & Ruby EG (2009) Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Applied and Environmental Microbiology 75, 193-202.

    Yoon JH, Lee JK, Kim YO & Oh TK (2005) Photobacterium lipolyticum sp. nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology 55, 335-339.

    Young RE & Mencher FM (1980) Bioluminescence in mesopelagic squid: diel color change during counterillumination. Science 208, 1286-1288.

    Young RE & Roper CFE (1977) Intensity regulation of bioluminescence during countershading in living midwater animals. Fishery Bulletin 75, 239-252.

    Zhang Z, Schwartz S, Wagner L & Miller W (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203-214.

    王凱毅, 張可揚, 李國添 & 廖正信 (2010) 南東海劍尖槍鎖管體型與生殖狀況之時空變化. 水產研究 18, 13-32.

    行政院農委會漁業署漁業資訊服務網:http://www.fa.gov.tw 漁業統計年報 (1993~2009年).

    何淑真 (2005) 臺灣海域鎖管的分類研究. 國立臺灣海洋大學環境生物與漁業科學系碩士論文.

    吳全橙 (2003a) 淺談頭足類的生殖行為與卵群辨識. 漁業推廣 199, 36-42.

    吳全橙 (2003b) 軟翅仔與墨魚. 水試專訊 4, 1-6.

    吳全橙 (2004) 魷魚與鎖管的辨識. 漁業推廣 209, 24-28.

    吳全橙 (2007) 大王魷與小鎖管. 水試專訊 17, 22-25.

    吳全橙, 林雅民, 江鈞正 & 簡春潭 (2004) 水產試驗所軟體動物標本目錄. 水試專訊 5, 27-34.

    吳全橙 & 曾福生 (2008) 劍尖槍烏賊的胚胎發育及其幼體觀察. 水產研究 16, 55-64.

    吳明隆 (2007) 共變數分析. In SPSS操作與應用-變異數分析實務, pp. 563-630. 臺北市: 五南圖書出版有限公司.

    沈明來 (2007) 生物檢定統計法. 臺北市: 九州圖書文物有限公司.

    陳家全, 李家維 & 楊瑞森 (1991) 負染色, 金屬投影與鑄模. In 生物電子顯微鏡學, pp. 61-70. 新竹市: 行政院國家科學委員會精密儀器發展中心.

    臺灣貝類資料庫:http://shell.sinica.edu.tw/ 臺灣軟體動物分類系統.

    蕭世裕 (2009) 蛋白質中的夜明珠-綠色螢光蛋白. 科學發展 440, 66-71.

    謝奉家, 林宗俊, 曾瑞堂 & 高穗生 (2004) 兼具殺蟲與抗菌作用之線蟲共生細菌-光桿菌. 植物保護學會會刊 46, 163-172.

    下載圖示
    QR CODE