簡易檢索 / 詳目顯示

研究生: 徐玉書
Hsu, Yu-Shu
論文名稱: 擴增實境情境與學習引導策略對高低先備知識國中生數學相似三角形學習成效、動機及態度之影響
Types of Augmented Reality Situation, Learning Guidance and Levels of Prior Knowledge on Junior High School Students' Learning of Similar Triangles
指導教授: 陳明溥
Chen, Ming-Puu
口試委員: 陳明溥
Chen, Ming-Puu
楊接期
Yang, Jie-Chi
顏榮泉
Yen, Jung-Chuan
口試日期: 2021/08/25
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 192
中文關鍵詞: 相似三角形數學情境學習擴增實境學習引導策略先備知識
英文關鍵詞: similar triangle, math situated learning, augmented reality, learning guidance, prior knowledge
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101523
論文種類: 學術論文
相關次數: 點閱:247下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討擴增實境情境(AR操作情境、AR模擬情境)及學習引導策略(問題引導、程序引導)對不同先備知識(高先備知識、低先備知識)國中生在數學相似三角形單元擴增實境數位遊戲學習活動之學習成效、學習動機及學習態度的影響。研究對象為國中八年級學習者,參與者來自新北市某國中八年級學生,有效樣本112人。本研究採因子設計之準實驗研究法,自變項為擴增實境情境、學習引導策略及先備知識。擴增實境情境根據學習者與學習情境互動方式,分為「AR操作情境」和「AR模擬情境」;「學習引導策略」依照指引的反思性高低,分為「問題引導」與「程序引導」;先備知識則依據參與者前一學期數學段考成績分為「高先備知識」與「低先備知識」。依變項則為相似三角形學習成效(知識理解、知識應用)、學習動機(價值成份、期望成份、科技接受度)與學習態度(自信心、喜好度、焦慮、學習過程、學習方法、有用性)。
    研究結果發現:就相似三角形學習成效而言,(1)在知識理解方面,AR操作情境組表現優於AR模擬情境組;(2)在知識應用方面,學習者接受問題引導策略時,AR操作情境組表現優於AR模擬情境組;而學習者透過AR模擬情境時,程序引導組表現優於問題引導組。其次,就數學學習動機而言,(3)各實驗組學習者對於學習活動皆抱持正向動機表現,其中在外在目標導向、自我效能與期望成功方面,AR操作情境組顯著優於AR模擬情境組;(4)在內在目標導向與期望成功方面,學習者接受問題引導為學習策略時,高先備知識組優於低先備知識組;對於高先備知識者來說,問題引導策略能促進更好的內在目標動機表現。最後,就數學學習態度而言,(5)各實驗組學習者對於學習活動皆抱持正向態度表現,其中在自信心與喜好度方面,AR操作情境組優於AR模擬情境組;(6)高先備知識者與低先備知識者相比有較佳的學習態度表現。

    The aim of this study was to explore the effects of types of augmented reality situation, types of learning guidance and levels of prior knowledge on junior high school students’ performance, motivation and attitude toward learning of similar triangles through augmented reality-based learning activity. Kolb’s experiential learning cycle was employed to serve as learning framework for the design of "The Savior of Lost Planet" augmented reality serious game. Participants were eighth graders from a public junior high school located in New Taipei City, Taiwan. The effective sample size was 112 for this study. A quasi-experimental design was employed and the independent variables included types of augmented reality situation, types of learning guidance and levels of prior knowledge. While the augmented reality situation consisted of the AR manipulative situation and the AR simulated situation, types of guiding strategies included the question-guidance and the procedure-guidance and levels of prior knowledge were divided into high level and low level. The dependent variables were participants’ learning performance, motivation and attitude.
    The results revealed that (a) for knowledge comprehension performance, the AR manipulative group outperformed the AR simulated group; (b) for knowledge application performance, while receiving the question-guidance, the AR manipulative group outperformed the AR simulated group; and the procedure-guidance group outperformed the question-guidance while interacting through the AR simulated situation. (c) For learning motivation, participants showed positive motivation and the AR manipulative group revealed higher degree of motivation than the AR simulated group; (d) while receiving the question-guidance, the learners with high level of prior knowledge revealed higher degree of motivation than the ones with low level of prior knowledge; for learners with high level of prior knowledge, receiving the question-guidance promoted higher motivation than receiving procedure-guidance. (e) As for learning attitude, participants showed positive attitude and the AR manipulative group revealed higher degree of attitude than the AR simulated group; (f) Compared to learners with low level of prior knowledge, the ones with high level of prior knowledge revealed higher degree of attitude.

    第一章 緒論1 第一節 研究背景與動機1 第二節 研究目的與待答問題5 第三節 研究範圍與限制6 第四節 重要名詞釋義8 第二章 文獻探討11 第一節 數學幾何學習11 第二節 數學情境學習15 第三節 擴增實境數學學習19 第四節 體驗式學習23 第五節 學習引導策略27 第六節 先備知識33 第三章 研究方法37 第一節 研究對象37 第二節 研究設計38 第三節 實驗流程62 第四節 研究工具64 第五節 資料處理與分析70 第四章 研究結果與討論77 第一節 相似三角形學習成效分析77 第二節 數學學習動機分析85 第三節 數學學習態度分析106 第五章 結論與建議117 第一節 結論117 第二節 建議121 參考文獻125 附錄142

    中文部分
    左台益、梁勇能(2001)。國二學生空間能力與 van Hiele 幾何思考層次相關性研究。師大學報:科學教育類,46(1&2),1-20。
    任欣垚(2012)。數位學習環境融入體驗式學習策略與先備知識對國小學生質因數概念學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    吳宗勇(2013)。故事融入相似形單元之補救教學研究(未出版碩士論文)。國立嘉義大學數理教育研究所,嘉義縣。
    吳宜靜(2003)。八二年版國一學生縮圖與放大圖繪製之概念與表現(未出版碩士論文)。國立臺南大學應用數學研究所,台南市。
    吳清山、林天祐(2005)。教育新辭書。台北市:高等教育。
    吳登坤(2008)。嘉義縣市九年級學生校外數學補習經驗、學習態度、學習策略與學業成就之相關研究(未出版碩士論文)。國立中正大學教育學研究所,嘉義縣。
    李佳芬、顏榮泉、顏晴榮(2013)。不同教學策略活化課程對國小三年級學童數學成就及其態度之影響(未出版碩士論文)。國立臺北教育大學數學暨資訊教育學系,台北市。
    李政豐(2000)。與學生分享圖解公式的樂趣。科學教育月刊,235,30-39。
    李俊儀、袁媛(2004)。資訊科技融入數學教學模組之開發與研究—以國中平面面幾何基礎課程教學為例。花蓮師範學院學報,19,119-142。
    林思汝(2014)。擴增實境遊戲式學習與編碼策略對國小學生槓桿原理學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    林星秀(2001)。高雄市國二函數課程 GSP 輔助教學成效之研究(未出版碩士論文)。國立高雄師範大學,高雄市。
    林若桓(2018)。繪本融入八年級學習障礙學生學習幾何作圖之個案研究(未出版碩士論文)。東海大學教育研究所,台中市。
    林碧珍(2003)。數學領域的連結—生活情境中的數學。新竹縣教育研究集刊,3,1-26。
    卓詠欽、王健華(2008)。擴增實境應用於台灣教育之初探研究─以國小自然與生活科技教育為例(未出版碩士論文)。國立臺灣師範大學圖文傳播學系,台北市。
    孟瑛如、吳東光(1999)。數學學習障礙與多媒體教材之發展應用。特殊教育,72,13-18。
    施保成(2011)。以 3D 電腦輔助設計軟體 Google SketchUp 融入國小複合形體表面積教學對學生數學學習成效之研究(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    邱貴發、鍾邦友(1993)。情境學習理論與電腦輔助學習軟體設計。臺灣教育,510,23-29。
    邱榮輝(2005)。科技與情境學習在國小比例尺教學之應用(未出版碩士論文)。國立嘉義大學教育科技研究所,嘉義縣。
    柳賢(1990)。從學生的個別差異談國中的數理教學。國教研究雙月刊,12,15-20。
    孫佩均(2017)。問題情境與回饋策略對高中生三角測量擴增實境數位遊戲學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    翁欣瑜(2002)。花蓮縣國小六年級泰雅族學童與平地學童幾何解題表現相關因素之研究(未出版碩士論文)。國立花蓮師範學院國小科學教育研究所,花蓮縣。
    陳盈帆(2007)。動態幾何軟體GSP對國小六年級學生面積概念學習影響之研究(未出版碩士論文)。臺北市立教育大學數學資訊教育研究所,台北市。
    陳俞臻、廖冠智(2015)。科學博物館情境式混合實境設計之初探。數位媒體設計國際研討會論文集,9,138-144。
    陳智偉(2011)。資訊融入情境式教學對於國中生數學學習成效之影響(未出版碩士論文)。淡江大學教育科技學系,新北市。
    袁媛、楊子賢(2012)。動態幾何軟體融入平行四邊形教學模式成效之探討。科學教育研究與發展季刊,64,77-104。
    徐新逸(1996)。情境學習在數學教育之應用。教學科技與媒體,29,13-22。
    許寧真(2008)。兒童在真實情境中學習認識蝴蝶的歷程(未出版碩士論文)。國立台南大學材料科學系,台南市。
    康木村、柳賢(2004)。國中學生「相似形」迷思概念之研究。中華民國第二十屆科學教育學術研討會發表之論文,國立高雄師範大學。
    教育部(2001)。國民中小學九年一貫課程暫行綱要數學學習領域。臺北:教育部。
    教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。臺北:教育部。
    教育部(2018)。國民基本教育課程綱要。取自: https://www.naer.edu.tw/ezfiles/0/1000/img/114/144789974.pdf
    黃永和(2009)。情境學習與教學研究。台北市:華香園。
    黃幸美(2003)。討論與真實情境對兒童解決問題的影響。教育研究集刊,49(1),95-133。
    黃國展(2003)。國三學生解相似形問題之歷程分析研究(未出版碩士論文)。國立高雄師範大學數學研究所,高雄市。
    張佩琦(2007)。運用臆測教學提昇國三學生數學學習成效—以相似形為例(未出版碩士論文)。國立高雄師範大學數學教學研究所,高雄市。
    張盈盈(2002)。多媒體在國小數學教學上之應用。國教天地,150,47-50。
    張英傑、張素宜(2008)。小寶貝,我把數學變簡單了!─ 從情境學習理論談數學課程設計。科學教育月刊,313,9-17。
    張春興(2000)。教育心理學:三化取向的理論與實踐。台北市:臺灣東華書局。
    楊佑盛(2018)。利用混合實境於數學步道學習動機與成效之研究(未出版碩士論文)。中原大學資訊管理研究所,桃園市。
    趙千翔(2013)。臺中市國民中學三年級學生相似形單元錯誤類型之分析研究(未出版碩士論文)。國立臺中教育大學教育學系,台中市。
    鄭文輝(2005)。國中數學能力卡測驗對學生的數學學習成就與態度之影響(未出版碩士論文)。佛光大學教育資訊學系,宜蘭縣。
    鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    蔡承哲(2012)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    盧健瑋(2017)。數位學習環境與引導策略對高低先備知識高中生數學遞迴學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    賴蕙慈(2010)。應用 van Hiele 幾何思考層次理論於國小學童體積概念數位教材開發之研究(未出版碩士論文)。國立臺北教育大學教育傳播與科技研究所,台北市。
    劉祥通、周立勳(1999)。國小比例問題教學實踐課程之開發研究。中師數理學報,3(1),1-25
    鍾邦友(2002)。以情境學習為觀點的統整課程設計。北縣教育,30,32-37。
    謝宗憲(2007)。探究媒體格式提升七年級學生電腦模擬電化學學習成效(未出版碩士論文)。國立嘉義大學教育科技研究所,嘉義縣。
    羅怡帆(2012)。體驗式遊戲策略與數學學習信心對國中生比例式課程學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    譚寧君(1993)。兒童的幾何觀—從van Hiele幾何思考的發展模式談起。國民教育,33(5&6),12-17。
    鐘樹椽、程璟滋(2001)。資訊科技應用於數學科教學之探討。教育資料與圖書館學,43(2),249-266。

    英文部分
    Aldalalah, O., Ababneh, Z., Bawaneh, A., & Alzubi, W. (2019). Effect of augmented reality and simulation on the achievement of mathematics and visual thinking among students. International Journal of Emerging Technologies in Learning (iJET), 14(18), 164-185.
    Alessi, S. M. & Trollip, S. R. (2001). Multimedia for learning: Methods and development. Boston, MA: Allyn & Bacon.
    Alexander, P. A. (1996). The past, present, and future of knowledge research: A reexamination of the role of knowledge in learning and instruction. Educational Psychologist, 31(2), 89-92.
    Alexander, P. A. & Jetton, T. L. (2000). Learning from text: A multidimensional and developmental perspective. In M. L. Kamil, P. B. Mosenthal, P. D. Pearson, & R. Barr (Eds.), Handbook of reading research: Vol. III (pp. 285−310). Mahwah, NJ: Erlbaum.
    Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1.
    Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational Psychology, 84, 261-271.
    Ames, C. & Archer, J. (1988). Achievement goals in the classroom: Students' learning strategies and motivation processes. Journal of Educational Psychology, 80, 260-267.
    Anderman, E. M. & Young, A. J. (1994). Motivation and strategy use in science: Individual differences and classroom effects. Journal of Research in Science Teaching, 31(8), 811-831.
    Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51(5), 267.
    Ausubel, D. P. (1978). In defense of advance organizers: A reply to the critics. Review of Educational Research, 48(2), 251–257.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Berlin, D. F. & White, A. L. (1998). Integrated science and mathematics education: Evolution and implications of a theoretical model. International Handbook of Science Education, 1, 499-512.
    Bernstein, D. A., Penner, L. A., Clarke-Stewart, A., Roy, E. J., & Wickens, C. D. (2003). Psychology (6th ed.). Boston, MA: Houghton-Mifflin.
    Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 1-5.
    Binks, T. (2003). The impact and potential future impact of augmented reality on education. Retrieve on Aug, 10(2014), 163-185.
    Boggan, M., Harper, S., & Whitmire, A. (2010). Using manipulatives to teach elementary mathematics. Journal of Instructional Pedagogies, 3.
    Bokosmaty, S., Mavilidi, M. F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313-326.
    Bolhuis, S. (2003). Towards process-oriented teaching for self-directed lifelong learning: A multidimensional perspective. Learning and Instruction, 13(3), 327-347.
    Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
    Brown, A. L. & Campione, J. C. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229–270). Cambridge, MA: The MIT Press.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
    Brown, M. C., McNeil, N. M., & Glenberg, A. M. (2009). Using concreteness in education: Real problems, potential solutions. Child Development Perspectives, 3(3), 160-164.
    Bruner, J. S. (1961). The art of discovery. Harvard Educational Review, 31, 21–32.
    Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
    Carraher, T. N., Schliemann, A. D., & Carraher, D. W. (1988). Mathematical concepts in everyday life. New Directions for Child and Adolescent Development, 1988(41), 71-87.
    Chang, K. E., Chen, Y. L., Lin, H. Y., & Sung, Y. T. (2008). Effects of learning support in simulation-based physics learning. Computers & Education, 51(4), 1486-1498.
    Chi, M. T., Glaser, R., & Rees, E. (1981). Expertise in problem solving. In R. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7–77 ). Hillsdale, NJ: Erlbaum.
    Chinnappan, M., Ekanayake, M. B., & Brown, C. (2012). Knowledge use in the construction of geometry proof by Sri Lankan students. International Journal of Science and Mathematics Education, 10(4), 865-887.
    Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24.
    Clark, R. E. (2009). How much and what type of guidance is optimal for learning from instruction? In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 158-183). New York, USA: Routledge/Taylor & Francis Group.
    Clark, R. E. & Elen, J. (2006). When less is more: Research and theory insights about instruction for complex learning. Handling Complexity in Learning Environments: Research and Theory, 283-297.
    Clark, R. E. & Estes, F. (1996). Cognitive task analysis for training. International Journal of Educational Research, 25(5), 403-417.
    Clark, R. E., Feldon, D., van Merriënboer, J., Yates, K., & Early, S. (2007). Cognitive task analysis. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 577–593). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. Handbook of Research on Mathematics Teaching and Learning, 420-464.
    Clifton, C. J. & Sowiaczek, M. L. (1981). Integrating new information with old knowledge. Memory & Cognition, 9(2), 142-148.
    Cohen, H. S., Bloomberg, J. J., & Mulavara, A. P. (2005). Obstacle avoidance in novel visual environments improved by variable practice training. Perceptual and Motor Skills, 101(3), 853-861.
    Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091.
    Cronbach, L. J. & Snow, R. E. (1977). Aptitudes and instructional methods: A handbook for research on interactions. New York, USA: Irvington.
    Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. Learning and Teaching Geometry, K-12, 1-16.
    Davis, E. A. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
    Davis, R.B., Maher, C.A., & Noddings, N. (Eds.) (1990). Constructivist views on teaching and learning of mathematics (Monograph). Reston, VA: National Council of Teachers of Mathematics.
    De Corte, E. (1995). Fostering cognitive growth: A perspective from research on mathematics learning and instruction. Educational Psychologist, 30(1), 37-46.
    De Freitas, S. & Griffiths, M. (2007). Online gaming as an educational tool in learning and training. British Journal of Educational Technology, 38(3), 535-537.
    Dewey, J. (1938). Experience and Education. New York, USA: Macmillan.
    Dochy, F. J. R. C. (1994). Prior knowledge and learning. In T. Husen & N. Postlewaithe (Eds.), International encyclopedia of education. 2nd Edition. (pp. 4698–4702). London, UK: Pergamon.
    Dochy, F., Segers, M., & Buehl, M. M. (1999). The relation between assessment practices and outcomes of studies: The case of research on prior knowledge. Review of Educational Research, 69(2), 145-186.
    Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040- 1048.
    Ersoy, M. & Akbulut, Y. (2014). Cognitive and affective implications of persuasive technology use on mathematics instruction. Computers & Education, 75, 253-262.
    Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, Netherlands: Springer.
    Frost, J. H. & Dornoo, M. D. (2006). Take time for action: Similar shapes and ratios. Mathematics Teaching in the Middle School, 12(4), 222-224.
    Fujita, T., Kondo, Y., Kumakura, H., Kunimune, S., & Jones, K. (2020). Spatial reasoning skills about 2D representations of 3D geometrical shapes in grades 4 to 9. Mathematics Education Research Journal, 32, 235-255.
    Gagné, R. M. (1985). The Conditions of Learning and Theory of Instruction. New York, USA: Holt, Rinehart and Winston.
    Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511-525.
    Glaser, R. & De Corte, E. (1992). Preface to the assessment of prior knowledge as a determinant for future learning. Assessment of Prior Knowledge as a Determinant for Future Learning, 1-22.
    Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian Psychology/Psychologie canadienne, 49(3), 233.
    Hailikari, T., Katajavuori, N., & Lindblom-Ylanne, S. (2008). The relevance of prior knowledge in learning and instructional design. American Journal of Pharmaceutical Education, 72(5).
    Han, I. & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281-2290.
    Hardiman, P. T., Pollatsek, A., & Well, A. D. (1986). Learning to understand the balance beam. Cognition and Instruction, 3(1), 63-86.
    Hendriana, H., Slamet, U. R., & Sumarmo, U. (2014). Mathematical connection ability and self-confidence (an experiment on junior high school students through contextual teaching and learning with mathematical manipulative). International Journal of Education, 8(1), 1-11.
    Hewson, P. W. & Hewson, M. G. (1988). An appropriate conception of teaching science: A view from studies of science learning. Science Education, 72(5), 597-614.
    Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research, 57(2), 283-319.
    Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
    Hopper, B. & Hurry, P. (2000). Learning the MI way: The effects on students’ learning of using the theory of multiple intelligences. Pastoral Care in Education, 18(4), 26-32.
    Iserbyt, P., Elen, J., & Behets, D. (2010). Instructional guidance in reciprocal peer tutoring with task cards. Journal of Teaching in Physical Education, 29(1), 38-53.
    Jarvis, P., Holford, J., & Griffin, C. (2003). The Theory & Practice of Learning. East Sussex, UK: Psychology Press.
    Johnson, D. A. (1972). Attitude in mathematics classroom. School Science and Mathematic, 72(9), 794-800.
    Johnson, L., Brown, S., Cummins, M., & Estrada, V. (2012). The technology outlook for STEM+ education 2012-2017: An NMC horizon report sector analysis (pp. 1-23). Austin, Texas: The New Media Consortium.
    Jonassen, D. H. & Grabowski, B. L. (1993). Handbook of individual differences, learning, and instruction. Hillsdale, NJ: Erlbaum.
    Kallia, M. & Panagiotis, S. (2010). The role of teaching in the development of basic concepts in geometry: How the concept of similarity and intuitive knowledge affect student’s perception of similar shapes. In Proceedings of Cerme (Vol. 6, pp. 736-745).
    Kalyuga, S., Ayres, P., Chandler. P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.
    Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21(1), 5-23.
    Kaufmann, H. (2006, August). The potential of augmented reality in dynamic geometry education. In 12th International Conference On Geometry and Graphics (ISGG), Ago (pp. 6-10). Salvador, Brazil.
    Kaufmann, H. & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27, 339- 345.
    Ke, F. & Grabowski, B. (2007). Gameplaying for maths learning: Cooperative or not? British journal of educational technology, 38(2), 249-259.
    Kikuo, A. H. & Tomotsugu, A. (2005). Augmented Instructions -A Fusion of Augmented Reality and Printed Learning Materials. Fifth IEEE International Conference on Advanced Learning Technologies (ICALT05), 213-215.
    Kiliç, S., Çene, E. & Demir, İ. (2012). Comparison of learning strategies for mathematics achievement in Turkey with eight countries. Educational Sciences: Theory and Practice, 12(4), 2594-2598.
    Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
    Klahr, D. (2009). To every thing there is a season, and a time to every purpose under the heavens: What about direct instruction? In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 291–310). New York, USA: Taylor and Francis.
    Klahr, D. & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661-667.
    Klopfer, E. & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203-228.
    Koedinger, K. R. & Aleven, V. (2007). Exploring the assistance dilemma in experiments with cognitive tutors. Educational Psychology Review, 19(3), 239-264.
    Kolb, D. A. (1976). Management and the learning process. California Management Review, 18(3), 21-31.
    Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. New Jersey, USA: Prentice Hall.
    Kolb, A. Y. & Kolb, D. A. (2009). Experiential learning theory: A dynamic, holistic approach to management learning, education and development. In S. J. Armstrong & C. V. Fukami (Eds.), The SAGE handbook of management learning, education and development (pp. 42-68). London, UK: Sage.
    Kosiol, T., Rach, S., & Ufer, S. (2019). Which mathematics interest is important for a successful transition to a university study program? International Journal of Science and Mathematics Education, 17(7), 1359-1380.
    Kuhn, D. (2007). Is direct instruction an answer to the right question? Educational Psychologist, 42(2), 109-113.
    Kye, B. & Kim, Y. (2008). Investigation of the relationships between media characteristics, presence, flow, and learning effects in augmented reality based learning. International Journal for Educational Media and Technology, 2(1), 4-14.
    Kyllonen, P. C. & Lajoie, S. P. (2003). Reassessing aptitude: Introduction to a special issue in honor of Richard E. Snow. Educational Psychologist, 38(2), 79-83.
    Lakoff, G. & Johnson, M. (2008). Metaphors we live by. Chicago, USA: University of Chicago Press.
    Lakoff, G. & Nunez, R. (2000). How the embodied mind brings mathematics into being. New York, USA: Basic Books.
    Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, UK: Cambridge University Press.
    Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
    Lazonder, A. W. & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681-718.
    Lee, C. Y. & Chen, M. J. (2015). Effects of worked examples using manipulatives on fifth graders' learning performance and attitude toward mathematics. Journal of Educational Technology & Society, 18(1), 264-275.
    Lee, C. Y., Chen, M. J., & Chang, W. L. (2014). Effects of the multiple solutions and question prompts on generalization and justification for non-routine mathematical problem solving in a computer game context. Eurasia Journal of Mathematics, Science and Technology Education, 10(2), 89-99.
    Lee, C. Y. & Chen, M. P. (2009). A computer game as a context for non-routine mathematical problem solving: The effects of type of question prompt and level of prior knowledge. Computers & Education, 52(3), 530-542.
    Lee, C. Y. & Yuan, Y. (2010). Gender differences in the relationship between taiwanese adolescents’ mathematics attitudes and their perceptions toward virtual manipulatives. International Journal of Science and Mathematics Education, 8(5), 937-950.
    Lewin, K. (1951). Field theory in social science: Selected theoretical papers. New York, USA: Harper & Row.
    Loring, R. (1998). Situated learning: Understanding contextual learning. Connections: National Tech Prep Network.
    Manches, A. & O’malley, C. (2012). Tangibles for learning: a representational analysis of physical manipulation. Personal and Ubiquitous Computing, 16(4), 405-419.
    Matlen, B. J. & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing? Instructional Science, 41(3), 621-634.
    Mayer, R. E. (2001). Multimedia learning. New York, USA: Cambridge University Press.
    Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 14.
    Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43 – 52.
    Mayer, R. E. & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.
    McCombs, B. L. (1989). Self-regulated learning and academic achievement: A phenomenological view. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theory, research, and practice (pp. 51-82). New York, USA: SpringerVerlag.
    McFarland, D. J. & Hamilton, D. (2006). Adding contextual specificity to the technology acceptance model. Computers in Human Behavior, 22(3), 427-447.
    McLellan, H. (1993). Evaluation in a situated learning environment. Educational Technology, 33(3), 39-45.
    Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321-1329.
    Moreno, R. & Mayer, R. E. (2002). Verbal redundancy in multimedia learning: When reading helps listening. Journal of Educational Psychology, 94(1), 156.
    Moreno, R. & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97(1), 117.
    Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372-377.
    Moyer-Packenham, P. S., Lommatsch, C. W., Litster, K., Ashby, J., Bullock, E. K., Roxburgh, A. L., Shumway, J. F., Speed, E., Covington, B., Hartmann, C., Clarke-Midura, J., Skaria, J., Westenskow, A., MacDonald, B., Symanzik, J., & Jordan, K. (2019). How design features in digital math games support learning and mathematics connections. Computers in Human Behavior, 91, 316-332.
    Nakahara, T. (2008). Cultivating mathematical thinking through representation. In Utilizing the representational system. Talk given at the APEC-Tsukuba International Conference (III), Tsukuba, Japan. Retrieved November (Vol. 17, p. 2019).
    National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
    National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
    National Research Council (NRC). (1996). National science education standards. Washington, D.C.: National Academy Press.
    Newsome, L. A., Wardlow, G. W., & Johnson, D. M. (2005). Effects of lecture versus experiential teaching method on cognitive achievement, retention, and attitude among high school agriscience students. National AAAE Research Conference, 146-156.
    O’Neil, H. F. & Fisher, Y. C. (2004). A technology to support leader development: Computer games. In D. V. Day, S. J. Zaccaro, & S. M. Halpin (Eds.), Leader development for transforming organizations: growing leaders for tomorrow (pp. 99-121). Mahwah, NJ: Lawerence Erlbaum Associates, Inc.
    Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
    Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, USA: Basic Books.
    Piaget, J. & Cook, M. T. (1952). The origins of intelligence in children. New York, USA: International University Press.
    Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1993). Reliability and predicative validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53(3), 801-813.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21-21.
    Poon, K. K. & Wong, K. L. (2017). Pre-constructed dynamic geometry materials in the classroom–how do they facilitate the learning of ‘Similar Triangles’? International Journal of Mathematical Education in Science and Technology, 48(5), 735-755.
    Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386.
    Recht, D. R. & Leslie, L. (1988). Effect of prior knowledge on good and poor readers' memory of text. Journal of Educational Psychology, 80(1), 16.
    Reimer, K. & Moyer, P. S. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
    Renkl, A. & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15-22.
    Roy, M. & Chi, M. T. (2005). The self-explanation principle in multimedia learning. The Cambridge Handbook of Multimedia Learning, 271-286.
    Salomon, G. & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanism of a neglected phenomenon. Educational Psychologist, 24(2), 113-142.
    Saxe, G. B. (1988). Candy selling and math learning. Educational Researcher, 17(6), 14-21.
    Schein, E.H. (1993). How can organizations learn faster? The challenge of entering the green room. Sloan Management Review, 34(2), 85-92.
    Schmitz, B., Specht, M., & Klemke, R. (2012, October 16-18). An analysis of the educational potential of augmented reality games for learning. In Proceedings of the 11th World Conference on Mobile and Contextual Learning, 1–7.
    Schraagen, J. M. & Chipman, S. F. (2000). State-of-the-art review of cognitive task analysis techniques. In J. M. Schraagen, S. F. Chipman & V. J. Shute (Eds.), Cognitive Task Analysis (pp. 467-487). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: The effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759.
    Schunk, D. H. (2003). Self-efficacy for reading and writing: Influence of modeling, goal setting, and self-evaluation. Reading & Writing Quarterly, 19(2), 159-172.
    Shelton, B. E. & Hedley, N. R. (2004). Exploring a cognitive basis for learning spatial relationships with augmented reality. Technology, Instruction, Cognition and Learning, 1(4), 323.
    Siegler, R. S. & Chen, Z. (1998). Developmental differences in rule learning: A microgenetic analysis. Cognitive Psychology, 36(3), 273-310.
    Spires, H. A., Donley, J., & Penrose, A. M. (1990). Prior knowledge activation: Inducing text engagement in reading to learn. Paper presented at the American Educational Research Association, Boston, MA.
    Squire, K. (2002). Cultural framing of computer/video games. Game Studies, 2(1), 1-13.
    Steffe, L. P. & Gale, J. E. (Eds.). (1995). Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum.
    Suarez, A., Specht, M., Prinsen, F., Kalz, M., & Ternier, S. (2018). A review of the types of mobile activities in mobile inquiry-based learning. Computers & Education, 118, 38-55.
    Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32(1), 9-31.
    Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138.
    Tobias, S. (1994). Interest, prior knowledge, and learning. Review of Educational Research, 64(1), 37-54.
    Tobias, S. & Duffy, T. M. (Eds.). (2009). Constructivist instruction: Success or failure? New York, USA: Routledge. University of Tasmania.
    van de Walle, J. A., Karp, K. S., Bay-Williams, J. M., Wray, J., & Rigelman, N. R. M. (2007). Elementary and middle school mathematics: Teaching developmentally. London, UK: Pearson Education.
    van Gog, T., Ericsson, K. A., Rikers, R. M., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Educational Technology Research and Development, 53(3), 73-81.
    van Hiele, P. M. (1986). Structure and insigh: A theory of mathematics education. Orlando, FL: Academic Press.
    van Merriënboer, J. J. G. & Kirschner, P. A. (2007). Ten steps to complex learning: A systematic approach to four component instructional design. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    VanZile-Tamsen, C. (2001). The predictive power of expectancy of success and task value for college students' self-regulated strategy use. Journal of College Student Development, 42(3), 233-241.
    Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed. ), Advanced Mathematical Thinking (pp. 65-81). Dordrecht, Netherlands: Springer.
    Vorholzer, A. & von Aufschnaiter, C. (2019). Guidance in inquiry-based instruction–an attempt to disentangle a manifold construct. International Journal of Science Education, 41(11), 1562-1577.
    Winn, W. (1993). Instructional design and situated learning: Paradox or partnership? Educational Technology, 33(3), 16-21.
    Weinstein, C. E. & Mayer, R. E. (1986). The teaching of learning strategies. In M. E. Wittrock (Ed. ), Handbook of research on teaching (pp. 315-327). New York, USA: Macmillan.
    Zheng, J., Li, S., & Zheng, Y. (2017). Students’ technology acceptance, motivation and self-efficacy towards the eSchoolbag: An exploratory study. Int. J. Infonomics, 10(3), 1350-1358.

    下載圖示
    QR CODE