簡易檢索 / 詳目顯示

研究生: 林郁君
論文名稱: 蛇類的氣囊與其跨越行為之探討
指導教授: 杜銘章
Tu, Ming-Chung
黃基礎
Hwang, Ji-Chuu
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
畢業學年度: 87
語文別: 中文
論文頁數: 59
中文關鍵詞: 樹棲蛇類陸棲蛇類跨越能力肺內壓
英文關鍵詞: arboreal snake, terrestrial snake, cantilever ability, lung, intrapulmonary pressure
論文種類: 學術論文
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛇類在適應不同生態環境的過程中,其形態、生理和行為上都表現出適合生存的特徵。已知樹棲蛇類的體型特別細長,血管肺較短,血壓偏高並有隨風搖擺的特殊行為。另外文獻雖認為樹棲蛇類跨越懸空的能力較強,但卻無數據加以支持。同樣的,雖有文獻的圖例顯示,樹棲蛇類的氣囊較陸棲蛇類長,但沒有其他文獻更進一步支持此現象。因此本研究旨在澄清樹棲蛇類的跨越能力是否較強,並探討蛇類的氣囊是否有助於其做跨越的動作。在檢視台灣地區的兩種黃頜蛇科蛇類﹕大頭蛇 (Boiga kraepelini) 和紅斑蛇(Dinodon rufozonatum)以及兩種蝮蛇科蛇類﹕赤尾青竹絲 (Trimeresurus stejnegri) 與龜殼花 (Trimeresurus mucrosquamatus) 的內臟器官相對於腹鱗的位置,和其所占腹鱗數的百分比。發現親緣關係是決定內部器官位置或比例長短的主要因素,而棲地類型則是次要導致親緣關係相近的蛇類在形態構造上的分化的次要因素。樹棲蛇類的呼吸道長度比例顯著大於陸棲性蛇類。
    為了了解蛇類懸空的跨越能力是否因棲地而有不同,以台灣地區的三種樹棲型蛇類,分別為大頭蛇、台灣鈍頭蛇 (Pareas formosanus) 和赤尾青竹絲以及三種陸棲型蛇類,分別為紅斑蛇、龜殼花、眼鏡蛇(Naja atra),作為測試的實驗材料。並以三種不同的方式表示其跨越能力,分別是(1)跨越距離除以吻肛長 (Csv),(2)跨越距離除以全長 (CT) 和(3)跨越距離除以吻端至其重心點的距離 (CG) 。結果顯示三種不同的表示方式,都是樹棲蛇類跨越能力比陸棲蛇類好。
    另一方面,在測試氣囊是否有助於蛇類做跨越動作的實驗部分,用馴養期間適應良好、數量最多的紅斑蛇作手術插管,並記錄肺內壓的變化。結果顯示,紅斑蛇在休息狀態下的呼吸頻率、平均肺內壓與平均肺內壓振幅都顯著小於活動狀態下的變化。在連續底質上的爬行與跨越時的肺內壓則無顯著差異,但是測試個體在跨越極限距離時會出現肺內壓的高峰。進一步以橡皮軟管 (外徑﹕0.55 cm,內徑﹕ 0.40 cm ) 插入部分個體的氣囊內,使其肺內壓力無法上升,但紅斑蛇仍能達到其原來的最大跨越極限,因此顯示氣囊對陸棲型的紅斑蛇沒有輔助跨越的功能。但是氣囊是否有助於樹棲型蛇類做跨越動作,則尚待進一步的實驗去驗證。

    To adapt for arboreal life, tree-dwelling snakes have adopted many changes in morphology, physiology and behavior. Although arboreal snakes seems have better cantilever ability, this behavior has not been studies quantitatively. Similarly, their air sac was shown to be longer than that of terrestrial snakes in a figure of one paper. But, no other report has verified whether this is a general trend. Consequently, I tried to cheek if above two phenomena is true and inquire whether air sac possess a function of aiding snakes in spanning.
    I examined the relative position of viscus to abdomen scales of 4 snakes: Boiga krapelini, Dinodon ruforzonatum, Trimeresurus stejnegeri and Trimeresurus mucrosqumatus. Phylogeny played more important role in shaping the position and length of viscus. However, within the same taxa, arboreal snakes did possess longer air sac than terrestrial snakes. To test whether arboreal snakes have better cantilever ability than terrestrial snakes, I added 2 more species; Pareas formosanus and Naja atra, in the cantilever experiments. All the arboreal snakes(B. krapelini, T. stejnegeri and Pareas formosanus )showed a better cantilever ability than terrestrial snakes(D. ruforzonatum, T. mucrosqumatus and N. atra) despite the difference of phylogeny.
    I used only D. ruforzonatum to examine the role of air sac in cantilever behavior. Because this species adapted well in laboratory and was abundant in the field. To monitor the intrapulmonary pressure in the air sac, I implanted a tube in the air sac and connected it to a pulse transducer. In resting condition, the respiratory frequency, mean intrapulmonary pressure, and amplitude of pressure were all significantly larger than that when in moving on the ground or spanning gaps. Although intrapulmonary pressure increased clearly when a snake almost reached its maximal cantilever length, no statistical difference of respiratory frequency, mean intrapulmonary pressure, and amplitude of pressure was found between crawling and spanning condition. When I further deflated the intrapulmonary pressure by implanting another bigger rubber tube in the air sac, I found the snake could still span a same length as before. Therefore, the results did not support the idea that air sac may aid snakes to span gaps. Because D. rufozonatum is a terrestrial snake, further investigation will reveal whether this condition may also apply to arboreal snakes.

    中文摘要********************** i 英文摘要********************** iii 一、前言********************** 1 二、 材料與方法******************* 6 (一) 形態構造*****************.. 6 (二) 跨越能力*****************.. 7 (三) 氣囊與跨越能力的相關測驗*********..10 (四) 統計分析方法***************.. 13 三、 結果**********************.14 (一) 形態構造*****************..14 (二) 跨越能力*****************..20 (三) 氣囊與跨越能力的相關測驗*********..23 四、 討論**********************.26 (一) 形態構造*****************. 26 (二) 跨越能力*****************..30 (三) 氣囊與跨越能力的相關測驗*********..36 五、 參考文獻********************.42 附表一 ~ 三********************.48 附圖一 ~ 九********************.51

    Ahrenfeldt, T. 1955. Two British anatomical studies on American reptiles (1650-1750), II.- E. Tyson: Comparative anatomy of the timber rattlesnake. Hepetologica 11: 49-70.
    Bartlett, D., Jr., and G.F. Birchard 1983. Effect of hypoxia on lung volume in the garter snake. Respir. Physiol. 53: 63-70.
    Bartlett, D., Jr., J.P. Mortola, and E.J. Doll 1986. Respiratory mechanics and control of the ventilatory cycle in the garter snake. Respir. Physiol. 64: 13-27.
    Brattstrom, B.H. 1959. The functions of the air sac in snakes. Hepetologica 15: 103-104.
    Carrington, R., and L.H. Matthews 1970. The skin. In R. Carrington and L.H. Matthews (eds.), The life of reptile. pp.283-331. Universe Book, New York.
    Clark, B.D., C. Gans, and H.I. Rosenberg 1978. Air floe in snake ventilation. Respir. Physiol. 32: 207-212.
    Daniels, C.B., A.W. Smits, and S. Orgeig. 1995. Pulmonary surfactant lipids in the faveolar and saccular lung regions of snakes. Physiol. Zool. 68(5): 812-830.
    Dowling, H.G. 1951. A proposed standard system counting ventrals in snakes. Bri. J. Herpet. 1: 97-99.
    Fleishman, L.J. 1985. Cryptic movement in the vin snake Oxybelis aeneus. Copeia 1985: 242-245.
    Gibbons, J.W. and R.D. Semlitsch, 1987. Activity patterns. In R.A. Seigel, J.T. Collins, and S.S. Novak(eds.), Snakes: Ecology and Evolutionary Biology, pp. 396-421. Macmillan, Inc. New York.
    Graham, J., J. Gee, and F. Robison. 1975. Hydrostatic and gas exchange function of the lung of the sea snake Pelamis platurus. Comp. Biochem. Physiol. 50A: 477-482.
    Gratz, R.K. 1978. Ventilation and gas exchange in the diamondback water snake, Natrix rhombifera. J. Comp. Physiol. 127: 299-305.
    Gratz, R.K., A.R. Amos, and G. Jurg. 1981. Gas tention profile of the lung of the Vipera xanthina paletinae. Respir. Physiol. 44: 165-176.
    Hailey, A. and PMC. Davies. 1986. Effects of size, sex, temperature and condition on activity metabolism and defense behavior of the viperine snake Natrix maura. J. Zool. series A 208(4): 541-558.
    Hartline, P.H. 1971. Physiological basis for detection of sound and vibration in snakes. J. Exp. Biol. 54: 349-371.
    Heckrotte, C. 1967. Relation of body temperature, size, and crawling speed of the common garter snake, Thamnophis s. sirtalis. Copeia 1967: 759-763.
    Hlastala, M.P., and A.J. Berger 1996. Comparative respiration physiology. In M.P. Hlastala and A.J. Berger(eds.), Physiology of Respiration, pp. 266-280. Oxford University Press, New York.
    Jandel Scientific SigmaStat- statistical software user*s manual 1994. Jandel Scientific US.
    Jayne, B.C., and A.F. Bennett 1990. Scaling of speed and endurance in garter snakes a comparison of cross-sectional and longitudinal allometries. J. Zool. 220(2):257-278.
    Kerfoot, W.C. 1970. The effect of functional changes upon the variability of lizard and snake body scale numbers. Copeia 1970: 252-260.
    Klauber, L.M. 1943. The correlation of variablility within and between rattlesnake populations. Copeia 1943: 115-121.
    Lawton, M.PC. 1992. Anaesthesia. In P.H. Beynon, M.PC. Lawton, and J.E. Cooper.(eds.), Manual of reptiles, pp. 170-183. BSAVA.
    Lillywhite, H.B. 1987a. Circulatory adaptions of snakes to gravity. Amer. Zool. 27: 81-95.
    Lillywhite, H.B. 1987b. Temperature, energetics, and physiological ecology. In R.A. Seigel, J.T. Collins, and S.S. Novak (eds.), Snakes: Ecology and Evolutionary Biology, pp. 442-477. Macmillan, Inc. New York.
    Lillywhite, H.B. 1988. Snakes, blood circulation and gravity. Sci. Amer. 256: 92-98.
    Lillywhite, H.B.1993. Subcutaneous compliance and gravitational adaptation in snakes. J. Exp. Zool. 267: 557-562.
    Lillywhite, H.B. 1995. Evolution of cardiovascular adaption to gravity. J. Gravi. Physiol. 2: 1-4.
    Lillywhite, H.B. and A.w. Smits 1992. The cardiovascular adaptations of viperid snakes. In J.A. Campbell and E.B. Brodie,Jr. (eds.), Biology of the pitvipers, pp.143-153. Salve, Inc. USA.
    Lillywhite, H.B., and R.W. Henderson 1993. Behavioral and function ecology of arboreal snakes. In R.A.Seigel and J.T.Collins(eds.), Snakes: Ecology and Behavior, pp. 1-48. MacGraw-Hill, Inc. New York.
    Lindell, L.E. 1994. The evolution of vertebral number and body size in snakes. Funct. Ecol. 8: 708-719.
    Lindell, L.E., A. Forsman and J. Meril* 1993. Variation in number of ventral scales in snakes:effect on body size, growth and survial in the adder, Vipera berus. J. Zool. 230: 101-115.
    Luchtel, D.L. and K.V. Kardong 1981. Ultrastructure of the lung of the rattlesnake, Crotalus viridis oreganus. J. Morph. 167: 29-47.
    McDonald, H.S. 1959. Respiratory functions of the ophidian air sac. Herpetologica 15: 193-198.
    Parker, W.S., and M.V. Plummer 1987. Population ecology. In R.A. Seigel, J.T. Collins, and S.S. Novak (eds.), Snakes: Ecology and Evolutionary Biology, pp. 253-301. Macmillan, Inc. New York.
    Rosenberg, H.I. 1973. Functional anatomy of pulmonary ventilation in the garter snake Thamnophis elegans. J. Morph. 140: 171-184.
    Randall,W.C., D.E. Stullken, and W.A. Hiestano 1944. Respiration of Reptiles as influenced by the composition of the inspired air. Copeia 1944: 136-144.
    Ruben, J.A. 1976. Correllation of enzyme activity, muscle myoglobin concerntration and lung morphology with activity metabolism in snakes. J. Exp. Zool. 197:313-320.
    Seymour, R.S. 1987. Scaling of cardiovascular physiology in snakes. Amer. Zool. 27: 97-109.
    Seymour, R.S., and H.B. Lillywhite 1976. Blood pressure in snakes from different habitats. Nature 264: 664-666.
    Shine, R. 1993. Sexual dimorphism in snakes. In R.A. Seigel and J.T.Collins(eds.), Snakes: Ecology and Behavior, pp. 49-86. MacGraw-Hill, Inc. New York.
    Stewart,G.R. 1965. Thermal ecology of the garter snakes Thamnophis sirtalis concinnus ( Hallowell ) and Thamnophis ordinoides ( Baird and Girard). Herpetologica 21: 81-103
    Stinner, J.N. 1982. Functional anatomy of the lung of the snake Pituophis melanoleucus. Am. J. Physiol. 243: R251-R257.
    Stinner, J.N. 1987. Gas exchange and air flow in the lung of the snake, Pituophis melanoleucus. J. Comp. Physiol. B 157:307-314.
    Thorpe, R.S. 1989. Pattern and function of sexual dimorphism: A biometric study of character variation in the grass snake (Natrix natrix, Colubridae) due to sex and its interaction with geography. Copeia 1989:53-62.
    Webster, D., and M. Webster. 1974.Respiratory system. In D. Webster and M. Webster (eds.), Comparative vertebrate morphology, pp.359-390. Academic press, Inc. New York University.
    Wither, P.C. 1992. Aerial respiration. In P.C. Withers(ed.), Comparative Animal Physiology, pp.608-664. Saunders College publishing.
    呂光洋、陳世煌和陳賜隆,1989。台灣爬蟲動物-陸棲蛇類。省立板橋高級中學。台北。
    林嘉貞和杜銘章,1997。樹棲蛇類呼吸適應的探討。Biol. Bull. NTNU. 32(1):13-18.
    陳兼善和于名振,1984。台灣脊椎動物誌,下冊。台灣商務書館。
    張正雄,1981。台灣的蛇類。台灣實用登山、求生,自然全集2。P177-182。
    蔡添順,1998。台灣北部地區赤尾青竹絲生殖週期之探討。國立台灣師範大學生物學系碩士論文。
    趙爾密、黃美華和宗愉,1998。中國動物誌-爬蟲綱-第二卷-有鱗目-蛇亞目。科學出版社。北京。

    無法下載圖示
    QR CODE