簡易檢索 / 詳目顯示

研究生: 羅彥程
Lo, Yen-Cheng
論文名稱: 臺灣本島輪胎與路面磨耗顆粒排放物質流分析
Material Flow Analysis of Tire and Road Wear Particles Emissions in Taiwan
指導教授: 郭乃文
Kuo, Nae-Wen
口試委員: 陳起鳳
Chen, Chi-Feng
王怡心
Wang, Yi-Shin
郭乃文
Kuo, Nae-Wen
口試日期: 2024/06/07
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 102
中文關鍵詞: 輪胎輪胎與路面磨耗顆粒(TRWP)路面逕流非點源污染水污染交通污染逕流處理環境衝擊
英文關鍵詞: Tire, Tire and Road Wear Particles (TRWP), road runoff, nonpoint source pollution, aquatic pollution, traffic pollution, runoff treatment, environmental impact
研究方法: 物質流分析
DOI URL: http://doi.org/10.6345/NTNU202400744
論文種類: 學術論文
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣人口稠密,交通密度十分之高,來自交通活動產生的細懸浮微粒污染已是社會大眾與學界關注的焦點,然而輪胎與路面磨耗的顆粒(TRWP)卻受到了忽視,國外研究已指出TRWP的滲出液對於特定水生生物具有致命毒性,因此了解TRWP在臺灣本島的排放量、移動途徑和環境分佈,對於路面非點源污染在水環境的管控具有積極的意義。
    本研究以物質流的方法估算使用階段中產生的臺灣本島TRWP年排放量,藉以填補臺灣在這方面短缺的資訊。估算結果顯示臺灣本島在2020年的TRWP排放量約為41,419.50~ 59,645.40公噸,相當於每人平均排放1.78~2.56公斤,其中總排放量最高者為自小客車,每車平均排放量最高者為大貨車。在環境分佈方面,研究中兩種情境下對大氣的貢獻皆為5.7%,在不假設水庫滯留的情境下,約有15.6%的TRWP會進入到農業土壤中滯留,剩餘的78.7%則會進入到海洋中,若考慮進入水庫的情境,則水庫中約會滯留13.4%的TRWP,農業土壤為13.3%,剩餘的67.6%則會進入到海洋中,兩種情境皆顯示了海洋做為TRWP最終歸宿的結果。
    本研究首次估算了臺灣本島TRWP的年排放量,同時對於其內含的潛在有害物質進行了初步的估算,結果顯示TRWP對於水域生態的潛在環境衝擊。除了排放量的估算外,對路面逕流與海洋污染的管控與預防亦提出了建議,期望透過硬體與軟體的結合,從源頭控制TRWP的產生,並在下游積極的處理已經產生的污染問題。
    雖然TRWP進入到環境後溶出的化學物質會對生物與人類產生何種衝擊,目前仍未有明確的定論,但在維護生態環境與人類健康福祉的目標下,我們有必要正視這項議題並及早因應,從而減少輪胎與道路磨耗顆粒對海洋及陸域生態的潛在威脅。

    Due to the high traffic density in Taiwan, fine particulate pollution has become a major concern for the public and academia. However, the problem caused by tire and road wear particles (TRWP) has been ignored. Recent research has found out that the leachate from TRWP being highly toxic to certain aquatic organisms. Therefore, to understand the emissions, transport pathways, and environmental distribution of TRWP in Taiwan is crucial for controlling non-point source pollution from roads in aquatic environments.
    In this study, I estimate the yield of TRWP during the usage phase in Taiwan using a material flow approach, aiming to fill the gap in information in this field. The results indicate that the TRWP yield in Taiwan were approximately 41,419.50 to 59,645.40 tons, equivalent to an average emission of 1.78 to 2.56 kilograms per person. Among these, passenger cars contributed the highest total emissions, while large trucks had the highest average emissions per vehicle. Regarding environmental distribution, in both scenarios proposed in this study, the contribution of TRWP to the atmosphere is 5.7%. In the scenario without assuming reservoir retention, about 15.6% of TRWP is retained in reservoirs, 13.3% in agricultural soil, and the remaining 67.6% would enter the ocean. Both scenarios indicate that the ocean is the final destination for TRWP.
    This study is the first to estimate the annual emissions of TRWP in Taiwan and provides a preliminary estimation of the potentially harmful substances contained within TRWP. The results indicate the potential environmental impact of TRWP on aquatic ecosystems. In addition to estimating emissions, this study also offers recommendations for the control and prevention of road runoff and marine pollution by combining hardware and software solutions to control TRWP generation from the source and actively address existing pollution issues downstream.
    Although the exact impact of the chemical substances leached from TRWP on organisms and humans after entering the environment is still unclear, it is necessary to address this issue and respond early to reduce the potential threat of TRWP to marine and terrestrial ecosystems, with the goal of protecting ecological environments and human health and well-being.

    謝辭 i 摘要 ii Abstract iv 目次 vi 表次 viii 圖次 x 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題與目的 2 第三節 研究範圍 2 第四節 研究流程 4 第二章 文獻回顧 5 第一節 輪胎與道路磨耗顆粒(TRWP) 5 第二節 TRWP的採樣方法與相關研究 14 第三節 TWP排放量推估方法 17 第四節 TWP內含物質對環境的衝擊 18 第五節 物質流分析 26 第三章 研究區概述與研究設計 29 第一節 研究區概述 29 第二節 研究區路面逕流現況 32 第三節 研究方法 37 第四章 研究結果與討論 66 第一節 臺灣本島TRWP排放量 66 第二節 臺灣本島TRWP的環境分佈 78 第三節 臺灣本島TWP產生的有害物質 82 第五章 結論與建議 85 第一節 結論與建議 85 第二節 研究限制 92 參考文獻 94

    內政部 (2005)。市區道路及附屬工程設計標準。
    內政部 (2021)。中華民國人口統計年刊 民國一○九年。
    水利署 (2021a)。109年各標的用水統計年報。
    水利署 (2021b)。中華民國一○九年 臺灣水文年報 第二部分─河川水位及流量。
    水利署 (2023a)。桃園市市管區域排水一覽表。
    水利署 (2023b)。高雄市管區域排水一覽表。
    水利署 (2024b)。臺南市管區域排水一覽表。
    王怡心 (2017)。不確定性分析應用於物質流分析與管理研究 國立臺灣大學環境工程學研究所。https://doi.org/10.6342%2fNTU201704492。
    交通部 (2020a)。公路里程面積-按縣市別分。
    交通部 (2023a)。全台小圖1120530。In Rd5-00092 (Ed.): 中華民國交通部公路總局-規劃組-路資管理科。
    林鎮洋、余嘯雷、何嘉浚、陳秋楊、溫清光、范致豪、張智華、徐宗宏、楊文龍 (2010)。事業活動非點源污染最佳管理措施手冊彙編 (非點源污染現地處理技術研究計畫)。行政院環保署。
    郭乃文 (2016)。能資源循環型社會之永續物質管理。農業生技產業季刊(46), 9-16。Article/Detail?docID=P20140709001-201607-201607260014-201607260014-9-16。
    經濟部. (2020)。109年各縣市加油站汽柴油銷售分析表。
    經濟部 (2023)。排水管理辦法。
    陈瑶、刘金、张颖昕、李佳旸、李桂菊 (2022)。环境老化对轮胎磨损颗粒内源重金属释放的影响。天津科技大學學報, 37。https://doi.org/10.13364/j.issn.1672-6510.20210221。
    營建署 (2020)。雨水下水道系統規劃及實施率。
    環保署 (2022)。臺灣空氣污染排放量[TEDS 11.1]線源─排放量推估手冊。臺北市: 行政院環境保護署。
    環境部 (2024)。街道揚塵洗掃作業執行手冊。
    ADAC. (2022). Tyre wear particles in the environment.
    Arthur, C., Baker, J. E., & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA [Technical Memorandum]. https://repository.library.noaa.gov/view/noaa/2509
    Baensch-Baltruschat, B., Kocher, B., Kochleus, C., Stock, F., & Reifferscheid, G. (2021). Tyre and road wear particles - A calculation of generation, transport and release to water and soil with special regard to German roads. Science of The Total Environment, 752, 141939. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141939
    Blok, J. (2005). Environmental exposure of road borders to zinc. Science of The Total Environment, 348(1), 173-190. https://doi.org/https://doi.org/10.1016/j.scitotenv.2004.12.073
    Bordin, E. R., Ramsdorf, W. A., Lotti Domingos, L. M., de Souza Miranda, L. P., Mattoso Filho, N. P., & Cestari, M. M. (2024). Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. Journal of Environmental Management, 349, 119396. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119396
    Boulter, P. G. (2005). A review of emission factors and models for road vehicle non-exhaust particulate matter [Article]. A Review of Emission Factors and Models for Road Vehicle Non-exhaust Particulate Matter.
    Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a
    Brunner, P. H., & Rechberger, H. (2003). Practical Handbook of Material Flow Analysis. Taylor & Francis. https://books.google.com.tw/books?id=CAnqmAEACAAJ
    Callender, E., & Rice, K. C. (2000). The Urban Environmental Gradient:  Anthropogenic Influences on the Spatial and Temporal Distributions of Lead and Zinc in Sediments. Environmental Science & Technology, 34(2), 232-238. https://doi.org/10.1021/es990380s
    Cardoso, D., Narcy, A., Durosoy, S., Bordes, C., & Chevalier, Y. (2021). Dissolution kinetics of zinc oxide and its relationship with physicochemical characteristics. Powder Technology, 378, 746-759. https://doi.org/https://doi.org/10.1016/j.powtec.2020.10.049
    Castan, S., Sherman, A., Peng, R., Zumstein, M. T., Wanek, W., Hüffer, T., & Hofmann, T. (2023). Uptake, Metabolism, and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce. Environmental Science & Technology, 57(1), 168-178. https://doi.org/10.1021/acs.est.2c05660
    Challis, J. K., Popick, H., Prajapati, S., Harder, P., Giesy, J. P., McPhedran, K., & Brinkmann, M. (2021). Occurrences of Tire Rubber-Derived Contaminants in Cold-Climate Urban Runoff. Environmental Science & Technology Letters, 8(11), 961-967. https://doi.org/10.1021/acs.estlett.1c00682
    Charbouillot, T., Janet, D. C., Schaal, P., Beynier, I., Boulat, J.-M., Grandchamp, A., & Biesse, F. (2022). Methodology for the direct measurement of tire emission factors. Science of The Total Environment, 160853. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160853
    Chemistry, U. s. E. o. I. (2003). Ullmann's Encyclopedia of Industrial Chemistry. 6th ed. Wiley-VCH Verlag GmbH & Co.
    Chen, X., He, T., Yang, X., Gan, Y., Qing, X., Wang, J., & Huang, Y. (2023). Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. Journal of Hazardous Materials, 452, 131245. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131245
    Chow, M. I., Lundin, J. I., Mitchell, C. J., Davis, J. W., Young, G., Scholz, N. L., & McIntyre, J. K. (2019). An urban stormwater runoff mortality syndrome in juvenile coho salmon. Aquatic Toxicology, 214, 105231. https://doi.org/https://doi.org/10.1016/j.aquatox.2019.105231
    Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588-2597. https://doi.org/https://doi.org/10.1016/j.marpolbul.2011.09.025
    Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-Wear Particles as a Source of Zinc to the Environment. Environmental Science & Technology, 38(15), 4206-4214. https://doi.org/10.1021/es034631f
    Dai, H., Sun, T., Han, T., Guo, Z., Wang, X., & Chen, Y. (2020). Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate. Environmental Research, 191, 110086. https://doi.org/https://doi.org/10.1016/j.envres.2020.110086
    Du, B., Liang, B., Li, Y., Shen, M., Liu, L.-Y., & Zeng, L. (2022). First Report on the Occurrence of N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD-Quinone as Pervasive Pollutants in Human Urine from South China. Environmental Science & Technology Letters, 9(12), 1056-1062. https://doi.org/10.1021/acs.estlett.2c00821
    Egab, L. (2020). Chapter 10 - Computer-aided engineering findings on the physics of tire/road noise. In X. Wang (Ed.), Automotive Tire Noise and Vibrations (pp. 217-243). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-818409-7.00010-6
    Egodawatta, P., Thomas, E., & Goonetilleke, A. (2007). Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Research, 41(13), 3025-3031. https://doi.org/https://doi.org/10.1016/j.watres.2007.03.037
    ETRMA. (2019). European TRWP Platform: Way Forward Report.
    EU. (2018). REGULATION (EU) 2018/858 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
    of 30 May 2018. Official Journal of the European Union.
    Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S., & Stohl, A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1), 3381. https://doi.org/10.1038/s41467-020-17201-9
    Fang, L., Fang, C., Di, S., Yu, Y., Wang, C., Wang, X., & Jin, Y. (2023). Oral exposure to tire rubber-derived contaminant 6PPD and 6PPD-quinone induce hepatotoxicity in mice. Science of The Total Environment, 869, 161836. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161836
    French, B. F., Baldwin, D. H., Cameron, J., Prat, J., King, K., Davis, J. W., McIntyre, J. K., & Scholz, N. L. (2022). Urban Roadway Runoff Is Lethal to Juvenile Coho, Steelhead, and Chinook Salmonids, But Not Congeneric Sockeye. Environmental Science & Technology Letters, 9(9), 733-738. https://doi.org/10.1021/acs.estlett.2c00467
    Haddad, L. M. (1998). Clinical Management of Poisoning and Drug Overdose (3rd Edition ed.). Saunders.
    Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., & Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environmental Science & Technology, 53(3), 1039-1047. https://doi.org/10.1021/acs.est.8b05297
    Hartwig, A., & Commission, M. A. K. (2016). N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6-PPD) [MAK Value Documentation, 2013]. In The MAK‐Collection for Occupational Health and Safety (pp. 746-770). https://doi.org/https://doi.org/10.1002/3527600418.mb79324e5516
    Hiki, K., Asahina, K., Kato, K., Yamagishi, T., Omagari, R., Iwasaki, Y., Watanabe, H., & Yamamoto, H. (2021). Acute Toxicity of a Tire Rubber-Derived Chemical, 6PPD Quinone, to Freshwater Fish and Crustacean Species. Environmental Science & Technology Letters, 8(9), 779-784. https://doi.org/10.1021/acs.estlett.1c00453
    Hu, X., Zhao, H. N., Tian, Z., Peter, K. T., Dodd, M. C., & Kolodziej, E. P. (2022). Transformation Product Formation upon Heterogeneous Ozonation of the Tire Rubber Antioxidant 6PPD (N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine). Environmental Science & Technology Letters, 9(5), 413-419. https://doi.org/10.1021/acs.estlett.2c00187
    Jan Kole, P., Löhr, A. J., Van Belleghem, F. G. A. J., & Ragas, A. M. J. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment [Review]. International Journal of Environmental Research and Public Health, 14(10), Article 1265. https://doi.org/10.3390/ijerph14101265
    Järlskog, I., Jaramillo-Vogel, D., Rausch, J., Gustafsson, M., Strömvall, A.-M., & Andersson-Sköld, Y. (2022). Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environment International, 170, 107618. https://doi.org/https://doi.org/10.1016/j.envint.2022.107618
    Järlskog, I., Strömvall, A. M., Magnusson, K., Gustafsson, M., Polukarova, M., Galfi, H., Aronsson, M., & Andersson-Sköld, Y. (2020). Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater [Article]. Science of The Total Environment, 729, Article 138950. https://doi.org/10.1016/j.scitotenv.2020.138950
    Ji, J., Li, C., Zhang, B., Wu, W., Wang, J., Zhu, J., Liu, D., Gao, R., Ma, Y., Pang, S., & Li, X. (2022). Exploration of emerging environmental pollutants 6PPD and 6PPDQ in honey and fish samples. Food Chemistry, 396, 133640. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133640
    Jiang, J.-R., Chen, Z.-F., Liao, X.-L., Liu, Q.-Y., Zhou, J.-M., Ou, S.-P., & Cai, Z. (2023). Identifying potential toxic organic substances in leachates from tire wear particles and their mechanisms of toxicity to Scenedesmus obliquus. Journal of Hazardous Materials, 458, 132022. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132022
    Johannessen, C., Helm, P., & Metcalfe, C. D. (2021). Detection of selected tire wear compounds in urban receiving waters. Environmental Pollution, 287, 117659. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117659
    Jonsson, P., Blomqvist, G., & Gustafsson, M. (2008, 2008). Wet dust sampler : technological innovation for sampling particles and salt on road surface Fourth National Conference on Surface Transportation Weather and Seventh International Symposium on Snow Removal and Ice Control Technology June 16–19, 2008 Indianapolis, Indiana, Washington DC. http://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-5213
    Kim, G., & Lee, S. (2018). Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environmental Science & Technology, 52(21), 12153-12161. https://doi.org/10.1021/acs.est.8b03459
    Klöckner, P., Reemtsma, T., Eisentraut, P., Braun, U., Ruhl, A. S., & Wagner, S. (2019). Tire and road wear particles in road environment – Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere, 222, 714-721. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.01.176
    Kocher, B. (2010). Stoffeintrag in Straßenrandböden-Messzeitraum 2005/2006.
    Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I., & Finley, B. L. (2010). Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies [Article]. Science of The Total Environment, 408(3), 652-659. https://doi.org/10.1016/j.scitotenv.2009.10.016
    Li, C., Zhang, Y., Yin, S., Wang, Q., Li, Y., Liu, Q., Liu, L., Luo, X., Chen, L., Zheng, H., & Li, F. (2023). First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment. Journal of Hazardous Materials, 132127. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132127
    Lin, T.-S., Wu, J.-W., Vo, T.-D.-H., Nguyen, V.-T., & Ju, Y.-R. (2023). Accumulation degree and risk assessment of metals in street dust from a developing city in Central Taiwan. Chemosphere, 339, 139785. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.139785
    Luhana, L., Sokhi, R., Warner, L., Mao, H., Boulter, P., McCrae, I., Wright, J., & Osborn, D. (2004). Measurement of non-exhaust particulate matter [Article]. Characterisation of Exhaust Particulate Emissions from Road Vehicles (PARTICULATES).
    Lundberg, J., Blomqvist, G., Gustafsson, M., Janhäll, S., & Järlskog, I. (2019). Wet Dust Sampler—a Sampling Method for Road Dust Quantification and Analyses. Water, Air, & Soil Pollution, 230(8), 180. https://doi.org/10.1007/s11270-019-4226-6
    Masset, T., Ferrari, B. J. D., Oldham, D., Dudefoi, W., Minghetti, M., Schirmer, K., Bergmann, A., Vermeirssen, E., & Breider, F. (2021). In Vitro Digestion of Tire Particles in a Fish Model (Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion. Environmental Science & Technology, 55(23), 15788-15796. https://doi.org/10.1021/acs.est.1c04385
    Mattonai, M., Nacci, T., & Modugno, F. (2022). Analytical strategies for the quali-quantitation of tire and road wear particles – A critical review. TrAC Trends in Analytical Chemistry, 154, 116650. https://doi.org/https://doi.org/10.1016/j.trac.2022.116650
    McIntyre, J. K., Lundin, J. I., Cameron, J. R., Chow, M. I., Davis, J. W., Incardona, J. P., & Scholz, N. L. (2018). Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. Environmental Pollution, 238, 196-203. https://doi.org/https://doi.org/10.1016/j.envpol.2018.03.012
    OECD. (2020). Non-exhaust emissions from road transport:Causes, consequences and policy responses ENV/EPOC/WPIEEP(2020)4/FINAL
    Panko, J. M., Chu, J., Kreider, M. L., & Unice, K. M. (2013). Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmospheric Environment, 72, 192-199. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.01.040
    Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78-97. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.04.028
    Park, I., Kim, H., & Lee, S. (2018). Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions [Article]. Journal of Aerosol Science, 124, 30-40. https://doi.org/10.1016/j.jaerosci.2018.07.005
    Philibert, D., Stanton, R. S., Tang, C., Stock, N. L., Benfey, T., Pirrung, M., & de Jourdan, B. (2024). The lethal and sublethal impacts of two tire rubber-derived chemicals on Brook trout (Salvelinus fontinalis) fry and fingerlings. Chemosphere, 142319. https://doi.org/https://doi.org/10.1016/j.chemosphere.2024.142319
    Prenner, S., Allesch, A., Staudner, M., Rexeis, M., Schwingshackl, M., Huber-Humer, M., & Part, F. (2021). Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres. Environmental Pollution, 290, 118102. https://doi.org/https://doi.org/10.1016/j.envpol.2021.118102
    Rauert, C., Charlton, N., Okoffo, E. D., Stanton, R. S., Agua, A. R., Pirrung, M. C., & Thomas, K. V. (2022). Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. Environmental Science & Technology, 56(4), 2421-2431. https://doi.org/10.1021/acs.est.1c07451
    Rødland, E. S., Heier, L. S., Lind, O. C., & Meland, S. (2023). High levels of tire wear particles in soils along low traffic roads. Science of The Total Environment, 903, 166470. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.166470
    Sieber, R., Kawecki, D., & Nowack, B. (2020). Dynamic probabilistic material flow analysis of rubber release from tires into the environment. Environmental Pollution, 258, 113573. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113573
    Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., & Gieré, R. (2018). Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol and Air Quality Research, 18(8), 2014-2028. https://doi.org/10.4209/aaqr.2018.03.0099
    Tian, Z., Gonzalez, M., Rideout, C. A., Zhao, H. N., Hu, X., Wetzel, J., Mudrock, E., James, C. A., McIntyre, J. K., & Kolodziej, E. P. (2022). 6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. Environmental Science & Technology Letters, 9(2), 140-146. https://doi.org/10.1021/acs.estlett.1c00910
    Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C., Hu, X., Prat, J., Mudrock, E., Hettinger, R., Cortina, A. E., Biswas, R. G., Kock, F. V. C., Soong, R., Jenne, A., Du, B., Hou, F., He, H., Lundeen, R., . . . Kolodziej, E. P. (2021). A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science, 371(6525), 185-189. https://doi.org/10.1126/science.abd6951
    Unice, K. M., Weeber, M. P., Abramson, M. M., Reid, R. C. D., van Gils, J. A. G., Markus, A. A., Vethaak, A. D., & Panko, J. M. (2019). Characterizing export of land-based microplastics to the estuary - Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Science of The Total Environment, 646, 1639-1649. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.368
    USTMA. (2021). Zinc and Tires. https://www.ustires.org/zinc-and-tires
    Varshney, S., Gora, A. H., Siriyappagouder, P., Kiron, V., & Olsvik, P. A. (2022). Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials, 424, 127623. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127623
    Verschoor, A., Poorter, L. d., Dröge, R., Kuenen, J., & Valk, E. d. (2016). Emission of microplastics and potential mitigation measures. Abrasive cleaning agents, paints and tyre wear (RIVM rapport 2016-0026, Issue. N. I. f. P. H. a. t. Environment.
    Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T., & Reemtsma, T. (2018). Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Research, 139, 83-100. https://doi.org/https://doi.org/10.1016/j.watres.2018.03.051
    Wang, T. (2017). Analysis on Tyre Wear:Modelling and Simulation. KTH Royal Institute of Technology School of Engineering Sciences.
    Wessolek, G., & Kocher, B. (2003). Verlagerung straßenverkehrsbedingter Stoffe mit dem Sickerwasser.
    Yang, K., Jing, S., Liu, Y., Zhou, H., Liu, Y., Yan, M., Yi, X., & Liu, R. (2022). Acute toxicity of tire wear particles, leachates and toxicity identification evaluation of leachates to the marine copepod, Tigriopus japonicus. Chemosphere, 297, 134099. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134099
    Zeng, L., Ai, C., Zhang, J., & Pan, Y. (2019). Toxicological effects of waterborne Zn on the proximal and distal intestines of large yellow croaker Larimichthys crocea. Ecotoxicology and Environmental Safety, 174, 324-333. https://doi.org/https://doi.org/10.1016/j.ecoenv.2019.02.088
    Zhang, C., Wang, J., Tan, L., & Chen, X. (2016). Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: Attention to the accumulation of intracellular Zn. Aquatic Toxicology, 178, 158-164. https://doi.org/https://doi.org/10.1016/j.aquatox.2016.07.020
    Zhang, R., Zhao, S., Liu, X., Tian, L., Mo, Y., Yi, X., Liu, S., Liu, J., Li, J., & Zhang, G. (2023). Aquatic environmental fates and risks of benzotriazoles, benzothiazoles, and p-phenylenediamines in a catchment providing water to a megacity of China. Environmental Research, 216, 114721. https://doi.org/https://doi.org/10.1016/j.envres.2022.114721
    中央研究院 (1999)。國家基本資料__自然環境現況。中央研究院。取自 http://webgis.sinica.edu.tw/epa/nationdata/datas.html。
    水利署 (2024a)。水利地理資訊服務平台。經濟部水利署。取自 https://gic.wra.gov.tw/Gis/Gic/API/Google/Index.aspx。
    交通部 (2020b)。臺灣的溫度和雨量特徵全書。取自 https://www.cwa.gov.tw/V8/C/K/Encyclopedia/climate/climate2_list.html。
    交通部 (2023b)。國情簡介_陸運。取自 https://www.ey.gov.tw/state/A44E5E33CDA7E738/738c0735-9a67-4bb8-a7da-5a9b0e956461。
    US EPA, O. (2023, 八月 9). 6PPD-quinone [Overviews and Factsheets]. https://www.epa.gov/chemical-research/6ppd-quinone

    下載圖示
    QR CODE