研究生: |
曾咨耀 Tzu-Yao Tseng |
---|---|
論文名稱: |
化學氣相沉積法合成石墨烯 Growth Graphene by Chemical Vapor Deposition |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 石墨烯 、銅箔 、化學氣相沉積法 、轉印 |
英文關鍵詞: | Graphene, copper, chemical vapor deposition, transfer |
論文種類: | 學術論文 |
相關次數: | 點閱:181 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著科技不斷進步,人類生活與科技更是密不可分,半導體與電子元件更是蓬勃發展。於半導體與電子元件逐漸縮小化之製程條件要求下,以往元件縮小技術面臨重大挑戰,此時直接製程微小奈米結構成為另一種趨勢。包括奈米碳管、奈米線與近年熱門新興材料石墨烯。其特有準二維結構與快速電子飄移率更是備受大家矚目。
有別於2010年諾貝爾獎得主在2004年所發表機械撥離法,也就是於高定向熱解離石墨(HOPG)中,運用膠帶反覆黏貼,機率性取出單層石墨烯。然而因取之不易,故無法針對工業上之應用進行量產。故本實驗採用化學氣相沉積法(CVD),利用過渡金屬銅箔當作催化金屬,於銅箔表面沉積石墨烯,並轉移至所需基板上。
根據2009年由美國德州大學R. S. Ruoff所率領之研究團隊在Science期刊發表,利用化學氣相沉積法於過渡金屬「銅」上合成95%以上單層石墨烯,因銅之自我限制機制,故當石墨烯完全覆蓋表面後將不再繼續沉積雙層甚至多層石墨烯。
相較於單層石墨烯快速之電子飄移率,雙層至十幾層有更多於單層石墨烯之自由電子數,更有利於較高導電效率之應用發展。因此我們研究溫度、壓力與氣體流量比例對石墨烯樣品結構與層數改變之影響。利用拉曼光譜分析儀分析品質與結構缺陷。
轉印製程中,我們利用PDMS支撐石墨烯並蝕刻銅箔,轉移至載玻片上。利用原子力顯微鏡與四點探針觀察厚度與其片電阻。
1.http://upload.wikimedia.org/wikipedia/commons/4/41/C60a.pn g
2.R. M. Reilly, Carbon Nanotubes: Potential Benefits and
Risks of Nanotechnology in Nuclear Medicine, J Nucl Med
48, 1039-1042 (2007).
3.A. K. Geim and K. S. Nonoselov, The Rise of Graphene,
Nat. Mater. 6, 183-191 (2007).
4.Web of Knowledge: http://portal.isiknowledge.com/
5.Landau and L. D. Zur, Theorie Der Phasenumwandlungen II,
Phys. Z Sowjetunion 11, 26-35 (1937).
6.N. D. Mermin, Crystalline Order in Two Dimensions, Phys.
Rev. 176, 250-254 (1968).
7.NewScientist: http://www.newscientist.com/article/dn21422-
slow-graphene-down-speed-computers-up.html
8.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov and A.K. Geim, The Electronic Properties of
Graphene, Rev. Mod. Phys. 81, 109-162 (2009).
9.http://math.ucr.edu/home/baez/week277.htm
10.J. Hass, W. A. de Heer and E. H. Conrad, The Growth and
Morphology of Epitaxial Multilayer Graphene, J. Phys.:
Condens. Matter 20, 323202 (2008).
11.F. Xia, D. B. Farmer, YM. Lin and P. Avouris, Graphene
Field-Effect Transistors with High On/Off Current Ratio
and Large Transport Band Gap at Room Temperature, Nano
Lett. 10, 715-718 (2010).
12.E. Jomehzadeh, A. R. Saidi and N. M. Pugno, Large
Amplitude Vibration of a Bilayer Graphene Embedded in a
Nonlinear Polymer Matrix, Physica E 44, 1973-1982 (2012).
13.J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo
and L. M. K. Vandersypen, Gate-Induced Insulating State
in Bilayer Graphene Devices, Nat. Mater. 7, 151-157
(2008).
14.M. Y. Han, B. Özyilmaz, Y. Zhang and P. Kim, Energy Band-
Gap Engineering of Graphene Nanoribbons, Phys. Rev.
Lett. 98, 206805 (2007).
15.Graphene Literature Review:
http://graphenelitreviews.blogspot.tw/
2009/02/electronic-and-magnetic-properties-of.html
16.Z. Xu and M. J. Buehler, Geometry Controls Conformation
of Graphene Sheets: Membranes, Ribbons and Scrolls, ACS
Nano 4, 3869-3876 (2010).
17.http://www.sciencenews.org/view/access/id/39865/title/Gra
phene_from_gases_for_new,_bendable_
18.Z. Xu, Graphene Nano-Ribbons Under Tension, J. Comput.
Theor. Nanosci. 6, 625-628 (2009).
19.L. Lindsay, D. A. Broido and N. Mingo. Flexural Phonons
and Thermal Transport in Graphene, Phys. Rev. B 82,
115427 (6) (2010).
20.S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P.
Pokatilov, C. N. Lau and A. A. Balandin, Dimensional
Crossover of Thermal Transport in Few-Layer Graphene,
Nature 9, 555-558 (2010).
21.A. A. Balandin, Superior Thermal Conductivity of Single-
Layer Graphene, Nano Letter. 8, 902-907 (2008).
22.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov,
Electric Field Effect in Atomically Thin Carbon Films,
Science 306, 666-669 (2004).
23.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D.
Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad,
P. N. First and W. A. de Heer, Electronic Confinement
and Coherence in Patterned Epitaxial Graphene, Science
312, 1191-1196 (2006).
24.T. Nakajima and Y. Matsuo, Formation Process and
Structure of Graphite Oxide, Carbon 32, 469-475 (1994).
25.V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, High-
Throughput Solution Processing of Large-Scale Graphene,
Nature Nano 4, 25-29 (2009).
26.P. R. Somani, S. P. Somani and M. Umeno, Planer Nano-
Graphenes from Camphor by CVD, Chem. Phys. Lett. 430, 56-
59 (2006).
27.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and
S. S. Pei, Graphene Segregated on Ni Surfaces and
Transferred to Insulators, Appl. Phys. Lett. 93, 113103-
3 (2008).
28.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,
A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L.
Colombo and R. S. Ruoff, Large-Area Synthesis of High-
Quality and Uniform Graphene Films on Copper Foils,
Science 324, 1312 (2009).
29.X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk,
B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L.
Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff,
Graphene Films with Large Domain Size By a Two-Step
Chemical Vapor Deposition Process, Nano Lett. 10, 4328-
4334 (2010).
30.C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.
H. Tsai, Y. Huang and L. J. Li, Highly Efficient
Restoration of Graphitic Structure in Graphene Oxide
Using Alcohol Vapors, ACS Nano 4, 5285-5292 (2010).
31.MTDATA:
http://resource.npl.co.uk/mtdata/phdiagrams/cni.htm
32.MTDATA:
http://resource.npl.co.uk/mtdata/phdiagrams/ccu.htm
33.表面科學: http://www.me.ncu.edu.tw/teacher/Teacher-
17/myweb4/ new_page_11.htm
34.http://www.cc.ntut.edu.tw/~mmlab104/08.htm
35.http://vhosts.science.nus.edu.sg/organicelectronics/?
p=1376
36.http://www.me.ntut.edu.tw/introduction/teacher/such/Raman
%20Systems%20Operation%20Manual.pdf
37.拉曼光譜原理:
http://crawler.ksu.edu.tw/utility/webpageCustomize/
DTCENTC/1082/files/Click%20here%20to%20download/%
20Theory%20and%20Applications%20of%20RAMAN%
20spectroscopy.pdf
38.拉曼光譜分析
法:http://web.ntust.edu.tw/~myang/ia/ch18/raman.html
39.ACS Material: http://acsmaterial.com/product.asp?
cid=88&id=106
40.四點探針電阻量測: http://www.mast-tech.com.tw/Resistivity%
20Measurement.pdf