簡易檢索 / 詳目顯示

研究生: 顏昱捷
Yen, Yu-Chieh
論文名稱: 主動式色變電漿子可視化生醫感測晶片之研發
Development of Active Color-Plasmonic for Naked-eye Biosensors
指導教授: 邱南福
Chiu, Nan-Fu
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 主動式色變電漿子有機發光二極體金奈米粒子生醫晶片定點照護檢測
英文關鍵詞: Active Color-Plasmonic, OLED, Nanoparticles, Biosensors, Point of care
DOI URL: https://doi.org/10.6345/NTNU202202964
論文種類: 學術論文
相關次數: 點閱:528下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的SPR檢測儀器擁有即時檢測、免標的、靈敏度高等優點,本研究將傳統的SPR檢測儀器積體微型化設計,提出新型主動式色變電漿子可視化生醫晶片,用於定點照護檢測、即時檢測與早期診斷提高現今社會的醫療品質。奈米壓印顯影技術是一種簡易製程技術,此技術應用於奈米結構的複印具有成本低,產量高等優勢,對於日後主動式色變電漿子生醫晶片的製造有極高的產業化優勢。主動層以有機發光二極體具備放光強度的均勻性,在電漿子生物檢測晶片的檢測過程中是不可或缺的條件。
    利用奈米壓印製作的奈米光柵激發表面電漿波,以下分別將實驗分為三大類,實驗一:奈米光柵於不同折射值環境內的共振角位移及色變能力,實驗二:金奈米粒子增強表面電漿量測生物分子訊號的靈敏度,實驗三:結合有機放光二極體的主動式色變電漿子晶片於生物反應檢測。
    光柵週期555 nm的結構,當折射值從n = 1到1.33,其耦合波長位移約190 nm,得到最低折射值變化量為1.736×10-3 RIU。利用金奈米粒子(15 nm)鍵結Peptide (1 mM)後的反應液與hCG (1 µM)鍵結反應,相較於未添加金奈米粒子的反應提高約43.88倍,其最低折射值變化量的靈敏度提高至3.956×10-5 RIU。相同條件下,使用金奈米粒子(33 nm)鍵結Peptide後與hCG特異性鍵結的參數用於主動式色變電漿子晶片中,固定量測角度:5°,因為環境折射值改變,以致電漿子放光波長位移16 nm,固定量測角度:-5°,其電漿子放光波長位移4 nm。我們預期色變電漿子生醫晶片未來可用於疾病的診斷,國人的健康是國家成長的動力,診斷科技可以改善人類於早期診斷及提早治療。

    The traditional SPR instrument has the advantages of real time, label free and high sensitivity. We proposed a new active color-plasmonic naked-eye biosensors that made the traditional SPR instrument miniaturization for point of care testing (POCT) with immediate detection and early diagnosis to improve the medical quality of today's society. Nano-imprinting technology is a simple process technology, this technology used in the preparation of nano-structure with low cost, high yield advantages that active color-plasmoinc biosensors manufacturing has a high production advantage in the future. Organic light-emitting diodes have uniformity of light emission intensity, which is an indispensable condition in the detection process of active color-plasmonic naked-eye biosensors.
    In this article that using nano-grating to excite the surface plasmonic wave.The experiment was divided into three categories. Experiment 1: The SP angular displacement and the colorimetric ability of the nano-grating in different refractive index environments. The sensitivity of the biomolecule signal of the nanoparticle to enhance the measurement of the biomolecule signal. Experiment 3: Testing active color-plasmonic biosensors combined in the biomolecule reaction.
    When the refraction index is from n = 1 to 1.33, the coupling wavelength shifted about 190 nm and the minimum refractive index is 1.736 × 10-3 RIU. The reaction of the reaction solution with gold nanoparticles (15 nm) after peptide (1 mM) was combined with hCG (1 μM), which was about 43.88 times higher than that of the metal nanoparticles without adding gold nanoparticles. The sensitivity was increased to 3.956 x 10-5 RIU. Under the same conditions, the use of gold nanoparticles (33 nm) bonding Peptide and hCG specific binding parameters for active color-plasmonic biosensors.Measurement angle: 5 °, because the ambient refraction index changes So that the emission shifted of plasmonic emission light 16 nm.Measurement angle: -5 °, the plasmonic emission wavelength shift 4 nm. We expect the active color-plasmon biosensors to be used in the future for the diagnosis of disease.The health of the people is the driving force of national growth and diagnostic technology can improve the early diagnosis and early treatment of human.

    致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 基本原理與文獻回顧 4 2.1 表面電漿子共振 4 2.1.1 表面電漿子共振發展 4 2.1.2 表面電漿子共振原理 5 2.1.3 表面電漿子光柵耦合放光機制 7 2.2 局域性表面電漿子共振 8 2.2.1 金屬奈米粒子之局域性表面電漿子共振簡介 8 2.2.2 金奈米粒子之局域性表面電漿子原理 9 2.2.3 金屬奈米粒子用於增強表面電漿共振靈敏度 9 2.3 奈米壓印顯影(Nanoimprint Lithography) 11 2.3.1 奈米壓印顯影歷史發展 11 2.3.2 奈米壓印顯影方式 11 2.3.3 奈米結構生物感測元件 12 2.4 色變生物感測器(Colorimetric Biosensors ) 14 2.4.1 色變生物感測器簡介 14 2.4.2 金奈米粒子色變感測器 15 2.4.3 奈米結構色變感測器 18 2.4.4 色變電漿子感測器 21 2.5 主動式有機發光二極體 24 2.5.1 有機發光二極體發展 24 2.5.2 主動式有機發光二極體結構 24 2.5.3 主動式有機發光二極體原理 26 2.5.4 主動式電漿子發光原理 27 第三章 實驗方法與材料 28 3.1 實驗方式 28 3.1.1 奈米光柵壓印製程 28 3.1.2 金奈米粒子製程方式 31 3.1.3 金奈米粒子與胜肽鍵結反應 34 3.1.4 奈米光柵生物晶片製作方式 35 3.1.5 主動式色變電漿子晶片製程方式 36 3.1.6 多功能電漿子量測系統 37 3.2 實驗耗材 39 3.3 實驗儀器設備 40 第四章 結果與討論 41 4.1 奈米壓印金屬光柵之表面電漿子共振 41 4.1.1 奈米光柵之表面電漿子共振角模擬 41 4.1.2 奈米光柵之表面電漿子共振量測 42 4.1.3 奈米光柵於不同折射值環境之表面電漿波特性分析 44 4.2 金奈米粒子提升生物檢測靈敏度 49 4.3 有機放光電漿子晶片 52 第五章 結論與未來展望 54 5.1 結論與未來展望 54 參考文獻 55

    [1] http://iiqsw.mohw.gov.tw/st3/index.html
    [2] 邱南福, “奈米光柵與晶格能隙於電漿子生物感測器之設計與製作,” 博士論文, 國立臺灣大學電機資訊學院電機工程學系,2008.
    [3] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Pro. Phys. Soc. London, 1902, 18, 267-275.
    [4] D. Bohm and D. Pines, “A collective description of electron interactions. I. magnetic interactions,” Phys. Rev, 1951, 82, 625-634.
    [5] D. Bohm and D. Pines, “A collective description of electron interactions. II. magnetic interactions,” Phys. Rev, 1952, 85, 338-353.
    [6] D. Bohm and D. Pines, “A collective description of electron interactions. III. magnetic interactions,” Phys. Rev, 1953, 92, 609-625.
    [7] E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys., 1971, 241, 313-324.
    [8] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., 1968, 216, 398-410.
    [9] B. Liedberg, C. Nylander and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators, B, 1983, 4, 299-304.
    [10] D. C. Cullen, R. G. W. Brown and C.R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors, 1987, 3, 211-225.
    [11] N. -F. Chiu, C. -D. Yang, Y. -L. Kao and K. -L. Lu, “Enhancing extraction of light from metalcomposite structures for plasmonic emitters using light-coupling effect,” Opt. Express, 2015, 13, 9602-9611.
    [12] N. -F. Chiu, C. -H. Hou, C. -J. Cheng and F. -Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” International Journal of Photoenergy, 2013, 7.
    [13] N. -F. Chiu, S. -Y. Fan, C. -D Yang and T. -Y. Huang, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” Biosens Bioelectron, 2017, 89, 370-376.
    [14] P. Johny, F. Jacqueline, G. S. Ribal, R. Paul, S. L. Marcos, M. G. Emerson, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators, B, 2012, 174, 270-273.
    [15] K. -L. Lee, W.-S. Wang and P. -K. Wei, “Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosens Bioelectron, 2008, 24, 210-215.
    [16] W. -H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir−blodgett films,”Anal Chem, 2013, 85, 4080-4086.
    [17] M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays, ” Nano Lett, 2009, 9, 2584-2588.
    [18] H. Gao, J. Henzie, M. H. Lee and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,”PNAS, 2008, 105, 20146-20151.
    [19] J. -C. Yang, H. Gao, J. Y. Suh, W. Zhou, M. H. Lee and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic three-dimensional nanohole arrays, ”Nano Lett, 2010, 10, 3173-3178.
    [20] A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun, 2015, 6:6939.
    [21] H. Gao, J.-C. Yang, J. Y. Lin, A. D. Stuparu, M. H. Lee, M. Mrksich and T. W. Odom, “Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors,” Nano Lett, 2010, 10, 2549-2554.
    [22] N. -F. Chiu, M. L. Ster, C. -D. Yang, M. -H. Tseng and F. -Y. Tsai, “Interactions between excitation and extraction modes in anorganic-based plasmon-emitting diode,” Appl. Surf. Sci, 2015, 332, 97-104.
    [23] D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling.” Appl. Phys. Lett, 2002, 80, 3679-3681.
    [24] J. Feng, T. Okamoto and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices.”Appl. Phys. Lett. 2005, 87, 241109.
    [25] J. R. Lakowicz, J. Malicka, I. Gryczynski and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection. Biochem. Biophys.” Res. Commun, 2003, 307, 435-439.
    [26] G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons.” Appl. Phys. Lett. 2006, 88, 051109.
    [27] S. Zeng, D. Baillargeat, H. P. Ho and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance forbiological and chemical sensing applications,”Chem. Soc.Rev, 2014, 43, 3426-3452.
    [28] S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu and Joel K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,”Nano Lett, 2014, 14, 4023-4029.
    [29] M. P. Nielsen, A. Ashfar, K. Cadien and A. Y. Elezzabi, “Plasmonic materials for metal-insulator-semiconductor-insulator-metal nanoplasmonic waveguides on silicon-on-insulator platform.” Opt. Mater, 2013, 36, 294-298.
    [30] M. T. Sun and H. X. Xu, “A novel application of plasmonics: plasmon-driven surface-catalyzed reactions.” Small, 2012, 8, 2777-2786.
    [31] B. Kang, M. M. Afifi, L. A. Austin and M. A. EI-Sayed, “Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via raman/fluorescence imaging spectroscopy,” ACS Nano, 2013, 7, 7420-7427.
    [32] C. -C. Chang, C. -P. Chen, C. -H. Lee, C. -Y. Chen and C. -W. Lin, “Colorimetric detection of human chorionic gonadotropin using catalytic gold nanoparticles and a peptide aptamer, ” Chem. Commun., 2014, 50, 14443-14446.
    [33] Y. -C. Yeh, B. Creran and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale, 2012, 4, 1871-1880.
    [34] L. A. Lyon, M. D. Musick and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem, 1998, 70, 5177-5183.
    [35] 曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作,” 物理雙月刊-中華民國物理學會, 2010.
    [36] D. V. Sotnikov, A. V. Zherdev and B. B. Dzantiev, “Detection of intermolecular interactions based on surface plasmon resonance registration,” Uspekhi Biologicheskoi Khimii, 2015, 55, 391-420.
    [37] T. Springer, M. L. Ermini, B. Spackova, J. Jablonku and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem, 2014, 86, 10350-10356.
    [38] S. Y. Chou, P. R. Krauss and P. J .Renstrom, “Imprint lithography with 25-nanometer resolution,” Science,1996, 272, 72-85.
    [39] S. -Y. Tseng, S. -Y. Li, S. -Y. Yi, A. Y. Sun, D. -Y. Gao and D. Wan,“Food quality monitor: paper-based plasmonic sensors prepared through reversal nanoimprinting for rapid detection of biogenic amine odorants,” ACS Appl. Mater. Interfaces, 2017, 9, 17306-17316.
    [40] S. C. Kitson, W. L. Barnes and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun, 1996, 132, l47-154.
    [41] S. Wedge, A. Giannattasio and W.L. Barnes, “Surface plasmon–polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron, 2007, 8, 136-147.
    [42] R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett, 1987, 12, 364-366.
    [43] G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett, 2006, 88, 0511091-0511093.
    [44] N. -F. Chiu, C. -J. Cheng and T. -Y. Huang, “Organic plasmon-emitting diodes for detecting refractive index variation,” Sensors, 2013, 13, 8340-8351.
    [45] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys, 1963, 38, 2042-2043.
    [46] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 1987, 51, 913-915.
    [47] C.-C. Yu, K. -H. Ho, H. -L. Chen, S. -Y. Chuang, S. -C. Tseng and W. -F. Su, “Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects,” Biosens Bioelectron, 2012, 33, 267- 273.
    [48] https://www.ch.ntu.edu.tw/~genchem99/doc/presentation/synthesis-and-characterizations-of-gold-nanoparticles-zh.pdf
    [49] X. Ding and K. -L. Yang, “Antibody-free detection of human chorionic gonadotropin by use of liquid crystals,” Anal. Chem, 2013, 85, 10710-10716.
    [50] M. H. Lee, H. Gao and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano lett, 2009, 9, 2584-2588.
    [51] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,”Springer Berlin Heidelberg, 1988.
    [52] S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection.” Sens. Actuators B Chem, 1996, 35, 187-191.
    [53] C. E. Jordan, A. G. Frutos, A. J. Thiel and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. ”Anal. Chem. 1997, 69, 4939-4947.

    無法下載圖示 本全文未授權公開
    QR CODE