簡易檢索 / 詳目顯示

研究生: 黃志力
Chih-Li Huang
論文名稱: 建置於網路合作學習系統中提升討論質量的自動適性介入機制
Implementing automatic adaptive intervention in a computer supported collaborative learning system to improve discussion quality and quantity
指導教授: 邱瓊慧
Chiu, Chiung-Hui
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 網路合作學習自動介入適性輔助學生模型
英文關鍵詞: computer supported collaborative learning, automatic intervention, adaptive help, student model
論文種類: 學術論文
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是以一個網路合作學習系統作為基礎平台,設計、實作能夠提升學生討論質量的自動適性介入機制。為了設計即時判斷學生特性的系統功能,本研究利用群集分析、區別分析處理學生在網路合作學習活動中討論的資料,得到針對缺乏參與、過度協調、喜愛社交、任務工作導向等四種不同特性的分類公式,本研究將公式整合成學生模型,並依此設計判斷學生特性功能。接著,本研究參考專家教師輔助不同特性學生的專家知識,設計四個元件分別輔助不同特性的學生,各元件的功能包含尋找介入手段、決定介入手段以及將指導語客製化。為了評估介入機制,本研究安排兩組學生實際在網路合作學習平台中合作,其中一組接受介入,最後分析有介入機制、無介入機制兩組學生行為的資料。結果顯示,由於介入機制中判斷學生特性功能的準確率不佳,因此介入機制僅能輔助少部分的學生,但有超過一半的學生在問卷調查中表示對介入機制的指導語感到滿意,且有接受介入的學生較未接受介入的學生有較多知識建構類發話、較少非作業相關對話。

    The purpose of this study was to construct an automatic adaptive intervention mechanism that promotes fruitful discussions in a computer supported collaborative learning system. In order to identify four types of students in real-time, namely less contributing, coordination emphasising, communicative and task-oriented, the discussion data was processed by cluster analysis and discriminant analysis to derive four discriminant functions to identify the four types of students. These discriminant functions were integrated into one student model, upon which the system function to identify student types was designed. With reference to expert knowledge, this research also designed functions including intervention finding, intervention deciding and advice generation. To evaluate the intervention mechanism, two groups of students were arranged to learn within the system: one with help from the intervention mechanism, the other without. After the system log was analyzed, results indicated that the accuracy of the function to identify which type the students belong to was low. Therefore intervention mechanism can only help few students. However, most of the students indicated that they were satisfied with the intervention they received, and the students with intervention had much more discussion on knowledge construction and less on social events than the students who received no intervention.

    摘要 摘要 i Abstract ii 附表目錄 vi 附圖目錄 viii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 系統分析 3 第貳章 文獻探討 5 第一節 學生模型 5 第二節 專家知識 8 第三節 智慧型合作學習系統 11 第參章 系統設計 18 第一節 合作學習平台 18 第二節 介入機制組成 19 第三節 介入機制功能 22 第肆章 系統實作 38 第一節 開發技術 38 第二節 介入機制運作流程 38 第伍章 系統評估 46 第一節 評估方法 46 第二節 結果 51 第三節 討論 69 第陸章 結論與建議 75 第一節 結論 75 第二節 建議 76 參考文獻 77 附錄一 有介入機制組問卷 81 附錄二 無介入機制組問卷 83

    中文部分
    邱瓊慧. (2005). 網路合作學習環境中群組互動過程自動化監測、分析與引導之研究 行政院國家科學委員會專題研究成果報告.
    邱瓊慧. (2010). 於網路合作學習系統中導入適性輔助設計以促進國小學童進行有效互動之研究.

    英文部分
    Ayala, G., & Yano, Y. (1998). A collaborative learning environment based on intelligent agents. Expert Systems with Applications, 14(1-2), 129-137.
    Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a constraint-based cscl environment for uml class diagrams. International Journal of Computer-Supported Collaborative Learning, 2(2), 159-190.
    Baker, M. (2000). The roles of models in artificial intelligence and education research: A prospective view. International Journal of Artificial Intelligenc in Education., 11, 122-143.
    Barros, B., & Verdejo, M. F. (2000). Analysing student interaction processes in order to improve collaboration. The degree approach. International Journal of Artificial Intelligence in Education, 11, 221-241.
    Bayon, A., Santos, O. C., Couchet, J., & Boticario, J. G. (2009, 4-6 Nov. 2009). An architecture for adaptive collaboration support guided by learning design. In Y. Badr, S. Caballé, F. Xhafa, A. Abraham & B. Gros (Eds.), Proceedings of Intelligent Networking and Collaborative Systems, 2009. INCOS '09. International Conference on (pp. 323-328), Barcelona, Spain. IEEE Computer Society.
    Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. Internatoinal journal of artificial intelligence in education, 13, 156-169.
    Casamayor, A., Amandi, A., & Campo, M. (2009). Intelligent assistance for teachers in collaborative e-learning environments. Computers & Education, 53(4), 1147-1154.
    Chaudhuri, S., Kumar, R., Howley, I., & Rose, C. p. (2009). Engaging collaborative learners with helping agents. In V. Dimitrova, R. Mizoguchi, B. Bulay & A. Graesser (Eds.), Proceedings of the 14th Intl. Conf. on Artificial Intelligence in Education (pp. 365–372), Brighton, UK.
    Chen, W. Q., Pedersen, R. H., & Pettersen, O. (2006). Colemo: A collaborative learning environment for uml modelling. Interactive Learning Environments, 14(3), 233-249.
    Chiu, C. H., Yang, H. Y., Liang, T. H., & Chen, H. P. (2010). Elementary students' participation style in synchronous online communication and collaboration. Behaviour & Information Technology, 29(6), 571-586.
    Constantino-González, M. A., & Suthers, D. D. (2001). Coaching collaboration by comparing solutions and tracking participation. Paper presented at the First European Conference on Computer-Supported Collaborative Learning. Universiteit Maastricht, Maastrict, the Netherlands.
    Constantino-Gonzalez, M. A., Suthers, D. D., & Icaza, J. I. (2001). Coaching web-based collaborative learning based on problem solution differences and participation. International Journal of Artificial Intelligence in Education, 13, 263 - 299.
    Constantino-Gonzalez, M. D. A., & Suthers, D. D. (2000). A coached collaborative learning environment for entity-relationship modeling. In Intelligent tutoring systems, proceedings (Vol. 1839, pp. 324-333). Berlin: Springer-Verlag.
    Daradoumis, T., Martinez-Mones, A., & Xhafa, F. (2004). An integrated approach for analysing and assessing the performance of virtual learning groups. In Groupware: Design, implementation, and use, proceedings (Vol. 3198, pp. 289-304).
    Diziol, D., Walker, E., Rummel, N., & Koedinger, K. (2010). Using intelligent tutor technology to implement adaptive support for student collaboration. Educational Psychology Review, 22(1), 89-102.
    Goodman, B., Linton, F., Gaimari, R., Hitzeman, J., Ross, H., & Zarrella, G. (2005). Using dialogue features to predict trouble during collaborative learning. User Modeling and User-Adapted Interaction, 15(1), 85-134.
    Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). Autotutor: An intelligent tutoring system with mixed-initiative dialogue. Education, IEEE Transactions on, 48(4), 612-618.
    Holt, P., Dubs, S., Jones, M., & Greer, J. (1994). The state of student modeling. In J. E. Greer, McCalla, G.I. (Ed.), Student modeling: The key to individualized knowledge-based instruction (pp. 3-35). Berlin: Springer-Verlag.
    Hoppe, H. U., & Ploetzner, R. (1999). Can analytic models support learning in groups? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches. Advances in learning and instruction series. New York: Elsevier Science.
    Israel, J., & Aiken, R. (2007). Support collaborative learning with an intelligent web-based system. Internatoinal Journal of Artificial Intelligence in Education, 17, 3-40.
    Jacoboson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-oriented software engineering - a use case driven approach. Greenwich, CT, USA: Addision-Wesley.
    Jermann, P., soller, A., & Muehlenbrock, M. (2005). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. International Journal of Artificial Intelligence in Education, 15(4).
    Karakostas, A., & Demetriadis, S. (2010). Adaptation patterns as a conceptual tool for designing the adaptive operation of cscl systems.
    Leinonen, P., Järvelä, S., & Lipponen, L. (2003). Individual students' interpretations of their contribution to the computer-mediated discussions. Journal of Interactive Learning Research, 14(1), 99-122.
    Lipponen, L. (2002). Exploring foundations for computer-supported collaborative learning. In G. Stahl (Ed.), Proceedings of Computer-supported Collaborative Learning 2002 Conference (pp. 72-81), Boulder, Colorado, USA.
    Lipponen, L., Rahikainen, M., Hakkarainen, K., & Palonen, T. (2002). Effective participation and discourse through a computer network: Investigating elementary students' computer supported interaction. Journal of Educational Computing Research, 27(4), 355-384.
    Or-Bach, R. (2003). Design considerations for supporting collaborative modeling. Paper presented at the 3rd IEEE International Conference on Advanced Learning Technologies. Greece.
    Or-Bach, R., & Van Joolingen, W. R. (2004). Designing adaptive interventions for online collaborative modeling. Education and Information Technologies, 9(4), 355-375.
    Pena-Shaff, J. B., & Nicholls, C. (2004). Analyzing student interactions and meaning construction in computer bulletin board discussions. Computers & Education, 42(3), 243-265.
    Pilone, D., & Pitman, N. (2006). Uml in a nutshell: A desktop quick reference (蔡學鏞, Trans.). Taipei: O'Reilly Media.
    Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3(3), 237-271.
    Rosatelli, M. C., & Self, J. A. (2004). A collaborative case study system for distance learning. International Journal of Artificial Intelligenc in Education., 14, 1-29.
    Rummel, N., & Weinberger, A. (2008). New challenges in cscl: Towards adaptive script support. In Proceedings of Proceedings of the 8th international conference on International conference for the learning sciences, Utrecht, The Netherlands. International Society of the Learning Sciences.
    Satzinger, J., Jackson, R., & Burd, S. (2007). System analysis & design in a changing world. Toronto, Ontario Canada: Thomson Corse Technology.
    Scheuer, O., & McLaren, B. (2008). Helping teachers handle the flood of data in online student discussions. In B. P. Woolf, E. Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of Intelligent Tutoring Systems (pp. 323-332), Montreal, Canada.
    Self, J. A. (1994). Formal approaches to student modelling. In G. F. C. V. K. Gauthier (Ed.), Student modelling: The key to individualized knowledge-based instruction (pp. 295-352). Berlin: Springer-Verlag.
    Silverman, B. G. (1995). Computer supported collaborative learning. Computers & Education, 25(3), 81-91
    Soh, L.-K., Khandaker, N., & Jiang, H. (2006). Multiagent coalition formation for computer-supported cooperative learning. In Proceedings of The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (pp. 1844-1852), Boston. AAAI Press.
    Soller, A., Goodman, B., Linton, F., & Gaimari, R. (1998). Promoting effective peer interaction in an intelligent collaborative learning system1. Paper presented at the the Fourth International Conference on Intelligent Tutoring Systems. San Antonio, TX.
    Soller, A., & Lesgold, A. (2000). Knowledge acquisition for adaptive collaborative learning environments. California: AAAI Press.
    Verdejo, M. F. (1994). Building a student moedl for an intelligent tutoring system. In J. E. Greer, McCalla, G.I. (Ed.), Student modelling: The key to individualized knowledge-based instruction (pp. 147). Berlin: Springer-Verlag.
    Vieira, A. C., Teixeira, L., Timóteo, A., Tedesco, P., & Barros, F. (2004). Analyzing on-line collaborative dialogues: The oxentch –chat. In J. C. Lester, R. M. Vicari & F. Paraguaçu (Eds.), Proceedings of Intelligent tutoring systems: 7th International Conference (pp. 72-101), Maceió, Alagoas, Brazil. Springer.

    下載圖示
    QR CODE