簡易檢索 / 詳目顯示

研究生: 李雲中
Li, Yun-Jhong
論文名稱: 具有高容忍角平面式日光集光器
Planar solar concentrator with high angular tolerance
指導教授: 鄧敦建
Teng, Tung-Chien
口試委員: 鄧敦建
Teng, Tung-Chien
張天立
Chang, Tien-Li
李宗憲
LI, Zong-Xian
口試日期: 2021/08/26
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 太陽能集光器
英文關鍵詞: Solar concentrator
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101494
論文種類: 學術論文
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將提出具有高容忍角的平面式日光收集器,總共分成兩部分進行設計:在集光器部分,當太陽光打入集光器後,光線經由環面鏡及拋物面反射面耦合進入導光板,再透過高折射率透鏡聚焦在導光板平坦的出光端面上;最後以複合式拋物面集光器(Compound Parabolic Collector, CPC)將聚焦的光線進一步集中;在追跡太陽光部分,採水平旋轉平台追跡太陽方位角,以移動式CPC補償太陽仰角所造成的聚焦位置變化;最終太陽能集光器模型之可對應的太陽光仰角之範圍為30°~ 90°,每日作用時長可達到8小時,且幾何集中倍率可達到250倍,在550 nm單頻光模擬結果整體平均效率為81.4%;AM1.5光源(400~900 nm)模擬整體平均效率依然達到77.5%,完成擁有高容忍角及高集中倍率的日光收集器。

    This paper proposed a planar solar collector with a high tolerance angle, which was divided into two main parts for design. In the collector, the sunlight passed a Y-toroidal lens and reflected on a parabolic surface to converge for being coupled into a light guide plate (LGP). Then, the convergent light passed a lens made of high-refractive index material and focused on a flat end of the LGP. Finally, a compound parabolic collector (CPC) received the focused light for further concentration. In the solar tracker, a planar rotatory stage traced the azimuthal position of the sun, and the movable CPCs compensated for the lateral displacement of the light-focusing position resulted from the polar position of the sun.The solar concentrator model can correspond to the range of the sun's elevation angle from 30° to 90°, the daily working time can reach 8 hours, and the geometric concentration ratio can reach 250. The overall average efficiency simulated for the light source of 550 nm is 81.4%; the simulated overall average efficiency of AM1.5 light source (400~900 nm) still reaches 77.5%.

    摘要 ii Abstract iii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 序論 1 1.1 前言 1 1.2 可再生能源 2 1.3 太陽能概論 2 1.3.1 光電轉換 2 1.3.2 光熱轉換 3 1.4 集光器 4 1.4.1 常見的光線機制 4 1.4.2 鏡面形狀 6 1.4.3 追跡方式 8 1.5 研究動機與目的 10 1.6 論文章節組成 10 第二章 基本理論與文獻回顧 11 2.1 折射定律(Snell’s Law/Refraction Law) 11 2.2 反射定律(Reflection Law) 11 2.3 全內反射(Total Internal Reflection) 12 2.4 圓錐曲線光學性質 13 2.4.1 圓錐曲線反射特性 13 2.4.2 圓錐曲線折射特性 14 2.5光學單位介紹 15 2.5.1照度(Illuminance) 15 2.5.2光通量(Luminous Flux) 15 2.5.3輝度(Luminance) 15 2.5.4發光強度(Luminous Intensity) 16 2.6 介面表面特性 17 2.7 光效率(Luminous Efficiency) 17 2.8 幾何集中倍率(Geometric Concentration Ratio) 18 2.9 均齊度(Uniformity) 18 2.10 集光倍率(Concentration Ratio) 19 2.11 文獻回顧 20 2.11.1靜止式非對稱拋物面太陽能集光器的微結構反射表面 20 2.11.2 用於正交集光器徑向耦合方法的平面式微光學太陽能收集器 21 2.11.3具有擴散器的平面式集光器 22 2.11.4以單軸追跡的高效能平面式日光集光器 23 2.11.5 準靜態微電池的高容忍角平面集光器 24 2.11.6多表面多元件組合太陽能聚光器綜述 24 2.11.7用於聚光光伏的光學器件: 趨勢、限制以及材料和設計的機會 25 2.12 模擬驗證 27 第三章 設計原理與模型架構 28 3.1 設計發想 28 3.2 模型結構設計 28 3.2.1 環狀集光器 30 3.2.1.6 環面透鏡 34 3.2.2複合拋物面集光器( Compound Parabolic Concentrator) 36 3.2.3 稜鏡板 38 3.3 光源設置 39 3.3.1 太陽光張角 39 3.3.2 AM 1.5 39 3.3.3太陽光之追跡系統設計 40 第四章 系統模型之參數設計與最佳化 45 4.1系統模型參數設計與優化 45 4.2環狀太陽能集光器 45 4.2.1模型初始值設計 45 4.2.2 導光板板長設計 48 4.2.3 決定導光板入口寬度 49 4.2.4環面透鏡參數設計 50 4.2.5 高折射率透鏡 53 4.2.6 集光器疊層設計 55 4.3 複合式拋物面集光器(CPC) 57 4.4 稜鏡板 59 4.5 模擬AM1.5光源 62 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 63 參考文獻 64

    1. 太陽能發電系統簡介∼「莫博士,帶你長知識」https://www.masterchain.media/details/Vnil-m1m5.html
    2. 平面聚焦式太陽能集光器http://ww2.me.ntu.edu.tw/~nec/ch/ch_e_02_1_1_4.htm
    3. Roman Bader, “Optical Design of a Novel Two-Stage Solar Trough Concentrator Based on Pneumatic Polymeric Structures,” Journal of Solar Energy Engineering 131(3) (2009).
    4. Samson M. Atnaw ,Che Ku Md. Faizal, Oumer Abduaziz,” Development of Solar Biomass Drying System,” MATEC Web of Conferences (2017).
    5. Ahed Hameed Jaaz, H. A. Hasan, K. Sopian, A. Kadhum, T. S. Gaaz, A. Al-Amiery,” Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC),” Materials 10(8) (2017).
    6. 「球形玻璃」:太陽能發電新選擇https://www.techbang.com/posts/16193-spherical-glass-the-new-choice-for-solar-power
    7. J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nature Communications 6, (2015).
    8. Esmaeil-Hooman Banaei, Ayman F. Abouraddy,” Design of a polymer optical fiber luminescent solar concentrator,”Progress in Photovoltaics Research and Applications 23(4) (2013).
    9. Maikel Hernandez,Pablo Benitez,Juan C. Miñano,Aleksandra Cvetkovic, Rubén Mohedano,” The XR nonimaging photovoltaic concentrator,” Proceedings of SPIE 6670 (2007).
    10. https://www.e-education.psu.edu/eme812/node/8
    11. J. Nilsson, R. Leutz, B. Karlsson, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator,” Solar Energy Materials & Solar Cells 91, 525-533 (2007).
    12. J. H. Karp, E. J. T. and J. E. Ford, “Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors,” Imaging and Applied Optics Congress OSA Technical Digest (CD) (Optical Society of America) (2010)
    13. Jung Min Kim, Partha S. Dutta,” Optical efficiency–concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Solar Energy Materials And Solar Cells 103 (2012).
    14. Tun-Chien Teng, Chi-Hsuan Kuo, and Yun-Jhong Li,” Planar solar concentrator composed of stacked waveguides with arc-segment structures and movable receiving assemblies,” Optics express 28(23) (2020)
    15. Katie Shanks n , S. Senthilarasu, Tapas K. Mallick,”Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design”
    16. Renewable and Sustainable Energy Reviews 60 (2016)
    17. Xinglong Ma, Hongfei Zheng, Shuli Liua, “A Review on Solar Concentrators with Multi-surface and Multielement Combinations” Journal of Daylighting 6 (2019)
    18. H.I. Ikeri, Augustine Onyia. “Investigation Of Optical Characteristics Of Semiconductor Quantum Dots For Multi Junction Solar Cells Applications” International Journal of Scientific & Technology Research 10(8) 2019
    19. Applications, Investigation Of Optical Characteristics Of Semiconductor Quantum Dots For Multi Junction Solar Cells

    下載圖示
    QR CODE