研究生: |
許田叡 HSU, Tien-Jui |
---|---|
論文名稱: |
金/銀奈米島狀薄膜的電漿子增強光催化二氧化碳還原的研究 Plasmon-Enhanced Photocatalytic CO2 Reduction of Gold/Silver Nanoisland Film |
指導教授: |
陳家俊
Chen, Chia-Chun |
口試委員: |
陳家俊
Chen, Chia-Chun 郭聰榮 Kau, Tsung-Rong 王迪彥 Wang, Di-Yan 陳俊維 Chen, Chun-We |
口試日期: | 2021/07/29 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 表面電漿共振 、二氧化碳還原 、光催化二氧化碳還原 、金/銀奈米島狀薄膜 |
英文關鍵詞: | localized surface plasmon resonance, carbon dioxide reduction, photocatalytic reduction, Au/Ag-NIFs |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101055 |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來全球暖化日益嚴重,其中二氧化碳是溫室效應的重要因素之一,因此封存二氧化碳以降低大氣中的二氧化碳濃度,成為人類近年來的重要課題。利用太陽光的能量,在光催化劑上驅動二氧化碳轉化為可再生能源,提供了一個環保且永續的策略。目前以半導體氧化物為主的光催化劑已經有許多文獻發表,但受限於有限的光譜吸收範圍,使其光催化效率有所耗損。由近期的文獻可知,使用貴金屬作為光催化劑,可以產生如甲烷、乙烷、丙烯等碳氫化合物,使其在光催化的領域上逐漸嶄露頭角,成為具有潛力之光催化劑,但其產率及選擇率仍有很大的進步空間且對於反應機制了解有限。本篇材料使用晶種成長法製備金奈米島狀薄膜(Au nanoisland films, Au-NIFs)以及銀奈米島狀薄膜(Ag nanoisland films, Ag-NIFs)。由於金屬奈米材料具有強烈的表面電漿共振(Localized surface plasmon resonance, LSPR)效應,可提升光催化活性,增強二氧化碳還原反應(CO2 reduction reaction, CO2RR)。本篇將Au/Ag-NIFs生長於ITO玻璃上,研究其光催化效果,並進一步藉由控制gap distance的大小,分析金屬奈米島狀結構,以探討對還原產物的選擇性及產率的影響。由光催化結果可得知,Au-NIFs的gap生成可以促進CH4形成,而island及nanoparticles (NPs) (不同Ag-NIFs的生長狀態)之光催化效果分別與gap length和gap distance關係呈正相關。另一方面,與Au-NIFs相比,Ag-NIFs具有較高的CH4產率及選擇性,且Ag NPs 較Ag-NIFs可能更適合用於CH4的CO2RR。由實驗結果可知,Au/Ag-NIFs的生成可以提升CO2RR光催化效果。未來期許本實驗所製備之材料可應用於光電催化二氧化碳還原領域。
Abstract
Recently, global warming has become a big problem, in which carbon dioxide is one of the main factors of the greenhouse effect. The technique of carbon dioxide fixation for the reduction of carbon dioxide levels in the atmosphere has become a major issue. The application photocatalysts provides an environmentally, friendly, and sustainable strategy, which uses solar energy to drive the CO2 reduction reaction into renewable structure. So far, many studies of photocatalysts based on semiconductor oxides have been published. However, the photocatalytic efficiencies are hindered due to their limited light source absorption capacity in the visible wavelength range. According to recent literature, noble metals can effectively produce hydrocarbons such as methane, ethane, propylene, which make them become the potential photocatalysts. Nevertheless, the application of noble metals in the field of photocatalysis is impeded by the limited photocatalytic efficacy and product selectivity, and the restricted understanding of mechanism. In the study, Au/Ag-NIFs were fabricated by seed-mediated growth. The strong LSPR effect of metallic nanomaterials can improve photocatalytic activity and promote the CO2 reduction reaction. We used ITO glass as the substrates for the fabrication of Au/Ag-NIFs to explore the photocatalytic effect. The effect of metal nanoisland structures and the influence of different distances on the photocatalytic reduction products were further analyzed. Based on the results of Au-NIFs, the generation of gap can promote the formation of CH4. The product yield of CO2RR of island and NP (the growth condition of Ag-NIFs) are positively correlated with gap length and gap distance, respectively. Furthermore, Ag-NIFs has a higher yield and selectivity of CH4. Besides, Ag NPs revealed the better photocatalytic production of CH4 than Ag-NIFs. According to the photocatalytic results, the Au/Ag-NIFs can significantly promote the photocatalytic effect. In the future, we believe the metallic NIFs can be further applied to the photoelectric catalytic CO2RR.
1. Wu, J., et al., CO2 reduction: from the electrochemical to photochemical approach. 2017. 4(11): p. 1700194.
2. Brenner, J., et al., Quantifying the Change in Greenhouse Gas Emissions Due to Natural Resource Conservation Practice Application in Iowa. Final Report to the Iowa Conservation Partnership. 2001.
3. 美國環境保護署;Avaliable from-
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
4. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. 2006. 103(43): p. 15729-15735.
5. Olah, G.A., G.S. Prakash, and A.J. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future. 2011. 133(33): p. 12881-12898.
6. Chu, S. and A.J.n. Majumdar, Opportunities and challenges for a sustainable energy future. 2012. 488(7411): p. 294-303.
7. Lewis, N.S.J.S., Research opportunities to advance solar energy utilization. 2016. 351(6271).
8. Amelse, J.J.A.a.S., Achieving Net Zero Carbon Dioxide by Sequestering
Biomass Carbon. 2020.
9. 溫室氣體減量技術-經濟部能源局
10. 二氧化碳之處理及固定技術;Avaliable from-http://ipmarket.ntust.edu.tw/upload/20110711143420-1.pdf
11. Kovačič, Ž., B. Likozar, and M. Huš, Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis, 2020. 10(24): p. 14984-15007.
12. Das, S. and W.W.J.R.A. Daud, A review on advances in photocatalysts towards CO2 conversion. 2014. 4(40): p. 20856-20893.
13. Wang, W.-N., et al., Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. 2012. 134(27): p. 11276-11281.
14. Ong, W.-J., et al., Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? 2016. 116(12): p. 7159-7329.
15. Shown, I., et al., Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. 2014. 14(11): p. 6097-6103.
16. Hsu, H.-C., et al., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. 2013. 5(1): p. 262-268.
17. Li, M., et al., Highly selective CO2 photoreduction to CO over gC3N4/Bi2WO6 composites under visible light. 2015. 3(9): p. 5189-5196.
18. Neaţu, S.t., et al., Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. 2014. 136(45): p. 15969-15976.
19. Low, J., et al., Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. 2016. 3: p. 24-35.
20. Hossain, S.T. and S.K.J. Mukherjee, Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. 2013. 260: p. 1073-1082.
21. White, J.L., et al., Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. 2015. 115(23): p. 12888-12935.
22. Ma, Y., et al., Titanium dioxide-based nanomaterials for photocatalytic fuel generations. 2014. 114(19): p. 9987-10043.
23. Zhu, S. and D.J.A.E.M. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. 2017. 7(23): p. 1700841.
24. Yan, L., F. Wang, and S.J.A.n. Meng, Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. 2016. 10(5): p. 5452-5458.
25. Kim, Y., J.G. Smith, and P.K.J.N.c. Jain, Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. 2018. 10(7): p. 763-769.
26. Linic, S., et al., Photochemical transformations on plasmonic metal nanoparticles. 2015. 14(6): p. 567-576.
27. Mosca, N., et al., Nitro‐Functionalized Bis (pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. 2018. 24(50): p. 13170-13180.
28. Zhang, J., et al., Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. 2007. 7(7): p. 2101-2107.
29. Haynes, C.L. and Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. 2001. 105(24): p. 5599-5611.
30. Sherry, L.J., et al., Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. 2006. 6(9): p. 2060-2065.
31. Sherry, L.J., et al., Localized surface plasmon resonance spectroscopy of single silver nanocubes. 2005. 5(10): p. 2034-2038.
32. Huang, W., W. Qian, and M.A.J.N.L. El-Sayed, Coherent vibrational oscillation in gold prismatic monolayer periodic nanoparticle arrays. 2004. 4(9): p. 1741-1747.
33. Willets, K.A. and R.P.J.A.R.P.C. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. 2007. 58: p. 267-297.
34. Barnes, W.L., A. Dereux, and T.W.J.n. Ebbesen, Surface plasmon subwavelength optics. 2003. 424(6950): p. 824-830.
35. Aslam, U., et al., Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. 2018. 1(9): p. 656-665.
36. Zhang, Y., et al., Surface-plasmon-driven hot electron photochemistry. 2017. 118(6): p. 2927-2954.
37. Liu, Z., et al., Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. 2011. 11(3): p. 1111-1116.
38. Mukherjee, S., et al., Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. 2014. 136(1): p. 64-67.
39. Collado, L., et al., Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4. 2015. 178: p. 177-185.
40. Yu, S. and P.K.J.N.c. Jain, Plasmonic photosynthesis of C 1–C 3 hydrocarbons from carbon dioxide assisted by an ionic liquid. 2019. 10(1): p. 1-7.
41. Mukherjee, S., et al., Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. 2013. 13(1): p. 240-247.
42. Hou, W., et al., Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. 2011. 1(8): p. 929-936.
43. Lee, J., et al., Plasmonic photoanodes for solar water splitting with visible light. 2012. 12(9): p. 5014-5019.
44. Murdoch, M., et al., The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. 2011. 3(6): p. 489-492.
45. Christopher, P., H. Xin, and S.J.N.c. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. 2011. 3(6): p. 467-472.
46. Kumari, G., et al., Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. 2018. 12(8): p. 8330-8340.
47. Naldoni, A., V.M. Shalaev, and M.L.J.S. Brongersma, Applying plasmonics to a sustainable future. 2017. 356(6341): p. 908-909.
48. Yu, S., et al., Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. 2017. 2(9): p. 2058-2070.
49. Zhang, Z., et al., Plasmon-driven catalysis on molecules and nanomaterials. 2019. 52(9): p. 2506-2515.
50. Yu, S., et al., Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. 2018. 18(4): p. 2189-2194.
51. Davatgaran Taghipour, Y., S. Kharrazi, and S.M.J.N.R.J. Amini, Antibody conjugated gold nanoparticles for detection of small amounts of antigen based on surface plasmon resonance (SPR) spectra. 2018. 3(2): p. 102-108.
52. Wu, W.-T., et al., Effect of surface coverage of gold nanoparticles on the refractive index sensitivity in fiber-optic nanoplasmonic sensing. 2018. 18(6): p. 1759.
53. Mills, A., S.J.J.o.p. Le Hunte, and p.A. Chemistry, An overview of semiconductor photocatalysis. 1997. 108(1): p. 1-35.
54. Zheng, Z., et al., Plasmon‐enhanced solar water splitting on metal‐semiconductor photocatalysts. 2018. 24(69): p. 18322-18333.
55. Panayotov, D.A., A.I. Frenkel, and J.R.J.A.E.L. Morris, Catalysis and photocatalysis by nanoscale Au/TiO2: perspectives for renewable energy. 2017. 2(5): p. 1223-1231.
56. Roy, S.C., et al., Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. 2010. 4(3): p. 1259-1278.
57. Zhang, P., et al., Effective charge carrier utilization in photocatalytic conversions. 2016. 49(5): p. 911-921.
58. Tahir, M., B. Tahir, and N.A.S.J.A.S.S. Amin, Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. 2015. 356: p. 1289-1299.
59. Tabakman, S.M., et al., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. 2011. 2(1): p. 1-9.
60. Kruss, S., et al., Au–Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. 2012. 28(2): p. 1562-1568.
61. Liaw, J.-W., et al., Purcell effect of nanoshell dimer on single molecule’s fluorescence. 2009. 17(16): p. 13532-13540.
62. Hsu, L.-Y., et al., Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism. 2020. 6(12): p. 3396-3408.
63. Tabakman, S.M., et al., A New Approach to Solution‐Phase Gold Seeding for SERS Substrates. 2011. 7(4): p. 499-505