簡易檢索 / 詳目顯示

研究生: 黃偉棣
Huang, Wei-Ti
論文名稱: 以技術探勘、主路徑分析與多準則決策法分析次世代半導體製程與元件之鰭式場效電晶體專利
Analyzing FINFET Patents in the Next Generation Semiconductor Process and Device Based on the Technology Mining, Main Path Analysis and MCDM Techniques
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 173
中文關鍵詞: 半導體專利探勘主路徑分析鰭式場效電晶體決策實驗室分析法決策實驗室網路流程法
英文關鍵詞: Semiconductor, Patent Mining, Main path analysis, FinFET, DEMATEL, DEMATEL Based Network Process
DOI URL: http://doi.org/10.6345/NTNU202001501
論文種類: 學術論文
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於科學與技術的進步,積體電路的材料、製程、與元件進展快速,而鰭式場效電晶體(Fin Field Effect Transistor, FinFET)的發明,更大幅改善傳統金屬氧化物半導體場效電晶體(Metal Oxide Semiconductor Field-Effect Transistor, MOSFET)元件的不足,成為半導體領域之新興技術,更是延長摩爾定律的重要元件之一。專利是科技廠商奠定市場地位的關鍵要素,半導體產業屬於技術密集型產業,必須創新技術以維持競爭優勢,故掌握核心的鰭式場效電晶體專利對於半導體廠商非常重要,以邏輯製程為主的晶圓代工廠尤其如此。唯學界與後進廠商少有關於鰭式場效電晶體專利之分析,因此本研究擬探勘鰭式場效電晶體之專利。首先,本研究定義所要探勘之專利範圍,其次,探勘美國專利商標局(USPTO)之專利資訊,再運用邊緣中介性群落分析法(edge betweenness clustering)和主路徑分析法(main path analysis)找出鰭式場效電晶體專利的主要路徑以及相似技術的專利,透過決策實驗室分析法(Decision Making Trial and Evaluation Laboratory)和決策實驗室網路流程法(DEMATEL based Network Process)分別找出每個專利之間的影響關係以及權重值,了解此領域的專利之發展過程以及重要的專利,實證研究之結果,可以分析領先的晶圓代工廠商的主要技術,提供後進晶圓代工廠商在未來五年進行專利佈局之參考依據。

    Over nearly two decades, due to the advances in science and technology, the materials, fabrication processes and devices of integrated circuits have faced tremendous changes. The proposal of the Fin Field-Effect Transistor (FinFET) has greatly improved upon the traditional deficiencies of the metal-oxide-semiconductor field-effect transistor (MOSFET) in the new process technology, becoming the emerging alternative technology, and it is also one of the important device for extending Moore's Law. Patents are a potential key for high technology firms to establish and sustain market positions. The semiconductor industry is a technology-intensive industry that must innovate technologically to maintain its competitive advantage, and patent litigation will directly affect the performance of semiconductor companies. Therefore, mastering the core FinFET patents is very important for semiconductor companies in general, and semiconductor foundries in special. However, the analysis of FinFET is rarely discussed, so this study intends to analyze the patents of FinFET by defining the scope of the prospecting data, using patent mining to examine USPTO patent data, using EBC and MPA to derive the main path of FinFET patents and patents of similar technologies, using the decision making trial and evaluation laboratory (DEMATEL) and the DEMATEL based network process (DANP) to derive the impact relationship and weight value of patents, and deriving the development process of patents in the field of FinFET. The results of the empirical research can identify the main technologies of the leader foundry and provide a reference basis for the late-coming semiconductor foundries for patent landscaping over the next five years.

    摘要 i Abstract ii Table of Contents iii List of Table vi List of Figure viii Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 2 1.3 Research Purposes 4 1.4 Research Methods 5 1.5 Research Limitation 6 1.6 Research Process 7 1.7 Research Structure 9 Chapter 2 Literature Review 11 2.1 FinFET 11 2.2 Data Mining 14 2.3 Patent Mining 17 2.4 Citations Analytics 21 2.5 Main Path Analysis and Patent Analytics 23 2.5.1 MPA 23 2.5.2 Patent Analytics 26 Chapter 3 Research Method 29 3.1 Main Path Analysis 29 3.2 Decision Making Trial and Evaluation Laboratory 39 3.3 DEMATEL Based Network Process 43 3.4 EBC 49 3.5 Research Process Example 51 Chapter 4 Empirical Study 55 4.1 Patent data collection 55 4.2 Basic statistics of FinFET patents 57 4.3 FinFET patents main path analysis results 65 4.3.1 Based on FinFET and Fin Field Effect Transistor 65 4.3.2 Based on FinFET or Fin Field Effect Transistor and source and drain and gate 77 4.3.3 EBC of FinFET 89 4.4 FinFET patent influence relationship and weight results 109 4.4.1 FinFET patent influences relationship results 109 4.4.2 The result of the weight of the FinFET patent 119 Chapter 5 Discussion 127 5.1 The development trajectory of FinFET technology 127 5.2 Identify the relationship and importance of FinFET technology 133 5.3 Managerial Implications 137 5.4 Future Research 144 Chapter 6 Conclusions 145 References 149 Appendix 161 Appendix 1 72 patents 161 Appendix 2 580 patents 162 Appendix 3 72 patent r+c, r-c results 170 Appendix 4 580 patent r+c, r-c results 171

    Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state of the art in patent analysis. World Patent Information, 37, 3-13.

    Amiri, H., Pourebrahim, S., Danehkar, A., & Mokhtar, M. B. (2020). Location-based planning for sustainable agro-processing industries using land suitability assessment and danp-vikor technique. Arabian Journal of Geosciences, 13(3), 144.

    Ardito, L., D'Adda, D., & Petruzzelli, A. M. (2018). Mapping innovation dynamics in the internet of things domain: evidence from patent analysis. Technological Forecasting and Social Change, 136, 317-330.

    Balog, A., BĂJENARU, L., & Cristescu, I. (2019). Analyzing the factors affecting the quality of iot-based smart wearable devices using the danp method. Studies in Informatics and Control, 28(4), 431-442.

    Batagelj, V. (2003). Efficient algorithms for citation network analysis. Preprint Series, 41.

    Batagelj, V., Doreian, P., Ferligoj, A., & Kejzar, N. (2014). Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution (Vol. 2). Hoboken, USA: John Wiley & Sons.

    Beltz, H., Fülöp, A., Wadhwa, R. R., & Érdi, P. (2017, 14-19 May 2017). From ranking and clustering of evolving networks to patent citation analysis. Paper presented at the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA.

    Bhattacharya, D., & Jha, N. K. (2014). FinFETs: from devices to architectures. Advances in Electronics, 2014, 365689.
    Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering Data Mining: From Concept to Implementation. Upper Saddle River, NJ: Prentice Hall, Inc.

    Chang, C. L., Lin, C. Y., Lai, K. K., & Chen, H. C. (2019). The role on inter-organizational knowledge flows of patent citation network: the case of thin-film solar cells. Paper presented at the 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Valbonne Sophia-Antipolis, France.

    Chen, L. C., Shih, I. C., & Liu, J. S. (2020). Identifying the main paths of knowledge diffusion in the voice over internet protocol. Journal of Internet Technology, 21(1), 85-98.

    Cheng, Y., Chen, K., Sun, H., Zhang, Y., & Tao, F. (2018). Data and knowledge mining with big data towards smart production. Journal of Industrial Information Integration, 9, 1-13.

    Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2010). Improving the e-store business model for satisfying customers’ needs using a hybrid MCDM combined DANP with grey relational model. In Advances in Intelligent Decision Technologies (pp. 113-121): Springer.

    Cho, H. P., Lim, H., Lee, D., Cho, H., & Kang, K. I. (2018). Patent analysis for forecasting promising technology in high-rise building construction. Technological Forecasting and Social Change, 128, 144-153.

    Cho, R. L., Liu, J. S., & Ho, M. H. C. (2019). Autonomous vehicle technology development: a patent survey based on main path analysis. Paper presented at the 2019 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA.

    Choe, H., Lee, D. H., Kim, H. D., & Seo, I. W. (2016). Structural properties and inter-organizational knowledge flows of patent citation network: the case of organic solar cells. Renewable and Sustainable Energy Reviews, 55, 361-370.

    Chuang, T. C., Liu, J. S., Lu, Y. Y., & Lee, Y. (2014). The main paths of medical tourism: from transplantation to beautification. Tourism Management, 45, 49-58.

    Colicchia, C., Creazza, A., & Strozzi, F. (2018). Citation network analysis for supporting continuous improvement in higher education. Studies in Higher Education, 43(9), 1637-1653.

    Colicchia, C., & Strozzi, F. (2012). Supply chain risk management: a new methodology for a systematic literature review. Supply Chain Management: An International Journal, 17(4), 403-418.

    Colicchia, C., & Strozzi, F. (2020). Information processing and management using citation network and keyword analysis to perform a systematic literature review on green dupply chain management. Journal of scientometric research, 4(3), 195-205.

    Costantini, V., Crespi, F., & Palma, A. (2017). Characterizing the policy mix and its impact on eco-innovation: a patent analysis of energy-efficient technologies. Research Policy, 46(4), 799-819.

    D’Oca, S., & Hong, T. (2015). Occupancy schedules learning process through a data mining framework. Energy and Buildings, 88, 395-408.
    De Meo, P., Ferrara, E., Fiumara, G., & Ricciardello, A. (2012). A novel measure of edge centrality in social networks . Knowledge Based Systems, 30, 136-150.

    Ding, T., Liang, L., Zhou, K., Yang, M., & Wei, Y. (2020). Water-energy nexus: the origin, development and prospect . Ecological Modelling, 419.

    Dos Santos, B. S., Steiner, M. T. A., Fenerich, A. T., & Lima, R. H. P. (2019). Data mining and machine learning techniques applied to public health problems: a bibliometric analysis from 2009 to 2018. Computers & Industrial Engineering, 138.

    Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: a review and bibliometric analysis . International Journal of Production Economics, 162, 101-114.

    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.

    Garfield, E. (1979). Is citation analysis a legitimate evaluation tool ? Scientometrics, 1(4), 359-375.

    Garfield, E., & Merton, R. K. (1979). Citation Indexing: Its Theory and Application in Science, Technology, and Humanities (Vol. 8). New York: Wiley.

    Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Philadelphia Pennsylvania USA Institute For Scientific Information Inc.

    Ghasempour, R., Nazari, M. A., Ebrahimi, M., Ahmadi, M. H., & Hadiyanto, H. (2019). Multi-Criteria Decision Making (MCDM) Multi-criteria decision making (MCDM) approach for selecting solar plants site and technology: a review. International Journal of Renewable Energy Development, 8(1), 15-25.

    Gigović, L., Pamučar, D., Božanić, D., & Ljubojević, S. (2017). Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of vojvodina, Serbia. Renewable Energy, 103, 501-521.

    Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of The National Academy of Sciences, 99(12), 7821-7826.

    Gordan, M., Ismail, Z., Abdul Razak, H., Ghaedi, K., Ibrahim, Z., Xin Tan, Z., & Hamad Ghayeb, H. (2019). Data mining based damage identification of a slab on girder bridge using inverse analysis. Measurement, 151.

    Govindarajan, U. H., Trappey, A. J. C., & Trappey, C. V. (2019). Intelligent collaborative patent mining using excessive topic generation. Advanced Engineering Informatics, 42.

    Hadi, W. e., El-Khalili, N., AlNashashibi, M., Issa, G., & AlBanna, A. A. (2019). Application of data mining algorithms for improving stress prediction of automobile drivers: a case study in jordan. Computers in Biology and Medicine, 114.

    Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and Techniques. Amsterdam, NL: Elsevier.

    Hand, D. J. (2006). Data mining. Encyclopedia of Environmetrics, 2.

    Hu, C., King, T. J., Subramanian, V., Chang, L., Huang, X., Choi, Y. K., Kedzierski, J. T., Lindert, N., Bokor, Jeffrey., Lee, W. C. (2002). Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture. U.S. Patent No. 6,413,802. Washington, DC: U.S. Patent and Trademark Office.

    Hu, C., & Sachid, A. (2011). Denser and more stable finfet sram using multiple fin heights. Paper presented at the 2011 International Semiconductor Device Research Symposium (ISDRS) (pp. 113-121), College Park, MD, USA.

    Hu, C., Hisamoto, D., Lee, W. C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T. J., Bokor, J. (2000). FinFET-A self-aligned double-gate MOSFET scalable to 20 nm , 47(12), 2320-2325.

    Huang, C. Y., Chung, P. H., Shyu, J., Ho, Y. H., Wu, C. H., Lee, M. C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter mems sensors by using hybrid mcdm methods. Sustainability, 10(10).

    Huang, C. Y., Shyu, J. Z., & Tzeng, G. H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765.

    Huang, M., Zolnoori, M., Balls-Berry, J. E., Brockman, T. A., Patten, C. A., & Yao, L. (2019). Technological innovations in disease management: text mining us patent data from 1995 to 2017. Journal of Medical Internet Research, 21(4).

    Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: the development of dna theory. Social Networks, 11(1), 39-63.

    Hummon, N. P., Doreian, P., & Freeman, L. C. (1990). Analyzing the structure of the centrality-productivity literature created between 1948 and 1979. Knowledge, 11(4), 459-480.

    Jerusalem, M. (2019). Model development for garment design assessing using dematel. Paper presented at the IOP Conference Series: Materials Science and Engineering, Yogyakarta, Indonesia.

    Ji, J., Barnett, G. A., & Chu, J. (2019). Global networks of genetically modified crops technology: a patent citation network analysis. Scientometrics, 118(3), 737-762.

    Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292.

    Karvonen, M., & Kässi, T. (2013). Patent citations as a tool for analysing the early stages of convergence. Technological Forecasting and Social Change, 80(6), 1094-1107.

    Kasravi, K., & Risov, M. (2007, 2007). Patent mining - discover y of business value from patent repositor ies. Paper presented at the 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

    Kestel, P., Kügler, P., Zirngibl, C., Schleich, B., & Wartzack, S. (2019). Ontology- based approach for the provision of simulation knowledge acquired by data and text mining processes. Advanced Engineering Informatics, 39, 292-305.

    Kim, Lee, B. K., & Sohn, S. Y. (2016). Quantifying technology–industry spillover effects based on patent citation network analysis of unmanned aerial vehicle (uav). Technological Forecasting and Social Change, 105, 140-157.

    Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237.

    Kim, G. J., Park, S. S., & Jang, D. S. (2015). Technology forecasting using topic-based patent analysis.

    Kim, J., & Lee, S. (2015). Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change, 92, 332-345.

    Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125, 236-244.

    León-Rovira, N., & Cho, S. (2007). Trends in computer aided innovation: second ifip working conference on computer aided innovation (Vol. 250). Michigan, USA: Springer Science & Business Media.

    Lee, G. K. F. (2003). The competitive consequences of technological convergence in an era of innovations: telephony communications and computer networking, 1989--2001. Ph.D. thesis, Haas School of Business, UC Berkeley.

    Lee, M. T., & Su, W. N. (2020). Search for the developing trends by patent analysis: a case study of lithium-ion battery electrolytes. Applied Sciences, 10(3), 952.

    Lei, L., Qi, J., & Zheng, K. (2019). Patent analytics based on feature vector space model: a case of IOT. IEEE Access, 7, 45705-45715.

    Li, X., Xie, Q., Jiang, J., Zhou, Y., & Huang, L. (2019). Identifying and monitoring the development trends of emerging technologies using patent analysis and twitter data mining: the case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 687-705.

    Liang, H., Wang, J.-J., Xue, Y., & Cui, X. (2016). IT outsourcing research from 1992 to 2013: a literature review based on main path analysis. Information & Management, 53(2), 227-251.

    Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X.-J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability, 10(1), 166.

    Liu, J. S., Lu, L. Y. Y., & Ho, M. H.-C. (2019). A few notes on main path analysis. Scientometrics, 119(1), 379-391.

    Liu, J. S., & Lu, Y. Y. (2012). An integrated approach for main path analysis: development of the hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528-542.

    Longhui, Z., Lei, L., & Tao, L. (2015). Patent mining: a survey . SIGKDD Explor. Newsl., 16(2), 1–19.

    Lu, L. Y., & Liu, J. S. (2016). A novel approach to identify the major research themes and development trajectory: the case of patenting research. Technological Forecasting and Social Change, 103, 71-82.

    Lu, Y. Y., Hsieh, C. H., & Liu, J. S. (2016). Development trajectory and research themes of foresight. Technological Forecasting and Social Change, 112, 347-356.

    Madani, F., & Weber, C. (2016). The evolution of patent mining: applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48.

    Maiti, C. K., & Maiti, T. (2018). Strain-engineered MOSFETs . In Strain-Engineered MOSFETs (pp. 136-163). Boca Raton: CRC Press.

    Martino, G., Fera, M., Iannone, R., & Miranda, S. (2017). Supply chain risk assessment in the fashion retail industry: an analytic network process approach. International Journal of Applied Engineering Research, 12, 140-154.

    Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2).

    Nilashi, M., Samad, S., Manaf, A. A., Ahmadi, H., Rashid, T. A., Munshi, A., Almukadi, W., Ibrahim, O., Ahmed, O. H. (2019). Factors influencing medical tourism adoption in malaysia: a dematel-fuzzy topsis approach. Computers & Industrial Engineering, 137.

    No, H. J., & Park, Y. (2010). Trajectory patterns of technology fusion: trend analysis and taxonomical grouping in nanobio technology. Technological Forecasting and Social Change, 77(1), 63-75.

    O’Mara-Eves, A., Thomas, J., McNaught, J., Miwa, M., & Ananiadou, S. (2015). Using text mining for study identification in systematic reviews: a systematic review of current approaches. Systematic Reviews, 4(1), 5.

    Pal, R. S., Sharma, S., & Dasgupta, S. (2017). Recent trend of finfet devices and its challenges: a review. Paper presented at the 2017 Conference on Emerging Devices and Smart Systems (ICEDSS).

    Park, Y. N., Lee, Y. S., Kim, J. J., & Lee, T. S. (2018). The structure and knowledge flow of building information modeling based on patent citation network analysis. Automation in Construction, 87, 215-224.

    Pietro, D. B. P., Kujala, R., Kaski, K., & Kivelä, M. (2020). Tracking the cumulative knowledge spreading in a comprehensive citation network. Physical Review Research, 2(1).

    Porter, A. L., & Cunningham, S. W. (2004). Tech Mining: Exploiting New Technologies for Competitive Advantage. Hoboken, NJ, USA: John Wiley & Sons.

    Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237-255.

    Qi, J., Lei, L., Zheng, K., & Wang, X. (2020). Patent analytic citation-based vsm: challenges and applications. IEEE Access, 8, 17464-17476.

    Ree, J. J., & Kim, K. (2019). Smart grid r&d planning based on patent analysis. Sustainability, 11(10), 2907.

    Saaty, T. L. (1996). Decision making with dependence and feedback: the analytic network process (Vol. 4922). Pittsburgh, PA: RWS Publ.

    Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process (Vol. 282). Pittsburgh, PA, USA: Springer.

    Shaikh, A. R., & Alhoori, H. (2019, 2-6 June 2019). Predicting patent citations to measure economic impact of scholarly research. Paper presented at the 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL).

    Sinha, S., Yeric, G., Chandra, V., Cline, B., & Cao, Y. (2012, 3-7 June 2012). Exploring sub-20nm Finfet design with predictive technology models. Paper presented at the DAC Design Automation Conference 2012.

    Sjögren, R., Stridh, K., Skotare, T., & Trygg, J. (2020). Multivariate patent analysis—using chemometrics to analyze collections of chemical and pharmaceutical patents. Journal of Chemometrics, 34(1), e3041.

    Sofean, M., Aras, H., & Alrifai, A. (2018, 2018). A workflow-based large-scale patent mining and analytics framework. Paper presented at the Information and Software Technologies, Cham.

    Tang, L., & Liu, H. (2010). Community Detection and Mining In Social Media. Synthesis lectures on data mining and knowledge discovery, 2(1), 1-137.
    Tiwari, P. K., Dubey, S., Singh, M., & Jit, S. (2010). A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 108(7).

    Trappey, A. J., Trappey, C. V., Govindarajan, U. H., & Sun, J. J. (2019). Patent value analysis using deep learning models—the case of iot technology mining for the manufacturing industry. IEEE Transactions on Engineering Management.

    Trappey, J. C., Trappey, C. V., Fan, C. Y., & Lee, I. J. Y. (2018). Consumer driven product technology function deployment using social media and patent mining. Advanced Engineering Informatics, 36, 120-129.

    Tsai, C. H., Chien, T. C., Fang, Z., Chen, K. W., & Yang, H. T. (2018). FinFET device. In: Google Patents.

    Tseng, M.-L., Wu, K.-J., Ma, L., Kuo, T. C., & Sai, F. (2019). A Hierarchical Framework for Assessing Corporate Sustainability Performance Using a Hybrid Fuzzy Synthetic Method-DEMATEL. Technological Forecasting and Social Change, 144, 524-533.

    Tzeng, G. H., & Huang, C. Y. (2012). Combined DEMATEL Technique with Hybrid MCDM Methods for Creating the Aspired Intelligent Global Manufacturing & Logistics Systems. Annals of Operations Research, 197(1), 159-190.

    Vanderlei, C. A., Quoniam, L., & Kniess, C. (2020). Patent technometry by mind maps: a study on the recycling of waste electrical and electronic equipment. International Journal of Innovation, 8(1), 77-100.

    Vazan, P., Janikova, D., Tanuska, P., Kebisek, M., & Cervenanska, Z. (2017). Using data mining methods for manufacturing process control. IFAC-PapersOnLine, 50(1), 6178-6183.

    Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research. Advances in Complex Systems, 10(01), 93-115.

    Wang, J., & Chen, Y. J. (2019). A novelty detection patent mining approach for analyzing technological opportunities. Advanced Engineering Informatics, 42.

    Wang, N., Liang, H., Jia, Y., Ge, S., Xue, Y., & Wang, Z. (2016). Cloud computing research in the is discipline: a citation/co-citation analysis. Decision Support Systems, 86, 35-47.

    Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641-658.

    Xu, S., Hao, L., An, X., Pang, H., & Li, T. (2020). Review on emerging research topics with key-route main path analysis. Scientometrics, 122(1), 607-624.
    Xuan, J., Deng, G., Liu, R., Chen, X., & Zheng, Y. (2019). Analysis of medication data of women with uterine fibroids based on data mining technology. Journal of Infection and Public Health.

    Yan, J., Tseng, F.-M., & Lu, L. Y. (2018). Developmental trajectories of new energy vehicle research in economic management: main path analysis. Technological Forecasting and Social Change, 137, 168-181.

    Yang, Y.-J., & Hwang, J.-C. (2020). Recent development trend of blockchain technologies: a patent analysis. International Journal of Electronic Commerce Studies, 11(1), 1-12.

    Zaki, M. J., Meira Jr, W., & Meira, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge, England: Cambridge University Press.

    Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). envelopment analysis application in sustainability: the origins, development and future directions. European Journal of Operational Research, 264(1), 1-16.

    無法下載圖示 本全文未授權公開
    QR CODE