簡易檢索 / 詳目顯示

研究生: 劉紹德
Liu, Shao-De
論文名稱: 台灣智慧交通創新政策之研究:以AHP及DEMATEL方法分析
A Study on Taiwan's Smart Transportation Innovation Policy: Use of AHP and DEMATEL Methods
指導教授: 蘇友珊
Su, Yu-Shan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 176
中文關鍵詞: 智慧交通層級分析法決策實驗室分析法創新擴散理論
英文關鍵詞: Smart Transportation, AHP, DEMATEL, Diffusion of Innovation Theory
DOI URL: http://doi.org/10.6345/NTNU201900519
論文種類: 學術論文
相關次數: 點閱:508下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著交通、旅行與移動時代的改變再加上E化世界日漸普及,越來越多國家的交通政策都已逐漸轉型與創新,因此本研究為探討台灣智慧交通創新政策,首先透過大量國內外論文、期刊、報章雜誌、網路媒體與各國智慧交通創新政策等文獻,再搭配創新擴散理論歸納出本研究之六大構面,分別為車聯網、智慧交通安全、交通管理系統、智慧基礎運輸科技、運輸資源整合共享、交通數據收集與三十二項準則。
    本研究結合AHP及DEMATEL兩種研究方法進行分析台灣智慧交通創新政策中之構面間與準則間的權重值、關聯程度與影響程度,並藉由兩者之研究結果判斷出長短期優先發展之智慧交通創新政策,因此本研究設計了AHP及DEMATEL兩項問卷給具有交通、運輸、地理、環境工程、AI、IOT等背景之15位專家進行填答,分別在政府界、學術界、產業界及財團法人,因此本研究專家為具有交通相關背景且分佈在不同工作場域將使本研究結果更具完整與代表性。
    本研究結果發現在智慧交通創新政策之六大構面中,若從短期重要程度來看,重要程度最高者為智慧交通安全應為優先發展之創新政策,但是就長期影響層面來看,交通數據收集為首要發展之創新政策,車聯網為次要發展之創新政策,而運輸資源整合共享為最後再發展之創新政策,因此本研究也將每一項構面下之準則進行優先發展順序之結果判斷,提供給台灣未來在智慧交通創新政策的擬定上做重要參考指標與選擇。

    With the advancements of transportation, the transformation of traveling and mobility in a digital world, there are more and more countries commit to an innovative transportation policy reform. Hence this research attempts to explore the smart transportation policy in Taiwan. It begins with a literature review including foreign and domestic research, journals, newspapers, magazines and online media coverage regarding the transportation policies of other countries. Furthermore, with Diffusion of Innovation Theory, the research results can be concluded into six major facets: Internet of Vehicles, smart transportation safety, transportation management system, smart transportation technology infrastructure, transportation resources integration and sharing, transportation data collecting and 32 other principles.
    This research combines both AHP and DEMATEL research methods to analyze smart transportation policy in Taiwan by the weight value, degree of association and degree of impact between facets and between criteria. The results help to determine the priority of framing both long-term and short-term smart transportation policy. Additionally, my research design AHP and DEMATEL questionnaires are distributed to 15 experts specializing in transportation, logistics, geography, environmental engineering, AI and IoT. In consideration of making the research results more complete and representative, my research experts are transportation professionals working from different fields such as government, academia, industry and foundations.
    The research indicates that, under the six major facets of framing smart transportation policy, smart transportation safety should be the top priority in the short-term development. However, in terms of long-term impact, transportation data collecting ranks as the top priority, while Internet of Vehicles development as the second and transportation resources integration and sharing as the least urgent innovation policy. Finally, this research also analyzes the priorities development sequence of each criterion under every facet, in the hope of providing a referential indicator when Taiwan aims to frame smart transportation policy in the future.

    摘要 i Abstract ii 目次 iv 表次 vi 圖次 x 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻探討 5 第一節 創新政策之定義與研究 5 第二節 智慧交通之發展趨勢 8 第三節 智慧交通之架構 11 第四節 各國智慧交通之創新政策 15 第五節 台灣智慧交通創新政策之構面與準則 42 第六節 創新擴散理論 54 第三章 研究方法 63 第一節 研究對象 63 第二節 問卷設計 65 第三節 研究構面之準則說明 67 第四節 層級分析法 70 第五節 決策實驗室分析法 77 第六節 結合AHP及DEMATEL之相關研究 81 第四章 資料分析與研究結果 87 第一節 AHP結果分析 87 第二節 DEMATEL結果分析 105 第五章 研究結論與討論 137 第一節 研究發現 137 第二節 研究討論 141 第三節 研究結論 142 第四節 研究貢獻 143 第五節 研究限制 145 第六節 未來研究方向 146 參考文獻 149 附錄 專家問卷 161

    中文部分

    Jain, G. (2016) 。智慧交通基礎設施讓你跟塞車說bye-bye!EDN Taiwan電子技術設計網。取自https://is.gd/zO0U7jRU

    中華民國行政院交通部(2017)。智慧運輸系統發展建設計畫—推動智慧運輸連結美好生活。取自https://www.ey.gov.tw/Page/5a8A0CB5B41DA11E/28d08113-895d-4c41-8851-8cd4e8650fef

    中華民國行政院交通部(2016)。智慧運輸系統發展計畫(106年-109年)。取自http://www.its-taiwan.org.tw/upload/file/1703271637520366.pdf

    中華智慧運輸協會(2014~2024)。台灣ITS十年發展藍圖。取自http://www.its-taiwan.org.tw/ch/a-2.asp

    王瑾瑜(2016)。美國以人工智慧控制交通燈,減少車程及廢氣排放。明日科技。取自https://tomorrowsci.com/technology /美國人工智慧控制交通燈減車程排放/

    交通部運研所(2014)。9大應用服務與35項服務項目。取自https://mic.iii.org.tw/aisp/FreeS.aspx?id=3036

    交通部(2012)。101年運輸政策白皮書。取自https://www.iot.gov.tw/FileResource.axd?path=html/doc/智慧型運輸.pdf

    李怡穎、徐嘉駿(2017)。美國智慧運輸系統發展現況。取自http://www.ceci.org.tw/modules/article-content.aspx?s=1&i=20

    沈怡如(2018)。智慧交通與車聯網發展趨勢。機械工業雜誌,418,70-75。

    汪添壽(2017)。以AHP及DEMATEL方法探討歐美日汽車廠商遴選扣件供應商之關鍵因素(未出版之碩士論文)。國立臺灣師範大學,台北市。

    吳美棱(2015)。結合DEMATEL與AHP探討疏濬工程決策評估因素之研究(未出版之碩士論文)。國立中興大學,台中市。

    李雅筑(2016)。他山之石-全球商機上看20兆元 英國帶頭造智慧城市。取自https://reurl.cc/4eV8L

    李雅憫(2012)。結合AHP與DEMATEL來評估基層員工之績效(未出版之碩士論文)。國立虎尾科技大學,雲林縣。

    何佩珊(2015)。阿姆斯特丹「變聰明」靠78萬小市民立大功。今周刊,983,取自https://is.gd/ypVegJ

    林曉芳(2014)。台灣ITS發展現況與產業發展議題分析。取自 https://mic.iii.org.tw/aisp/FreeS.aspx?id=3036

    林雅惠(2016)。全球ITS各擅勝場台整合服務拓商機。工商時報。取自https://m.ctee.com.tw/dailynews/20160501/a09aa9/710469/9e4d7a373582d48f1d9c3992ad1fda2d?t=tpp

    林子豪(2015)。想騎單車上班,卻總是搶不到YouBike?「哥本哈根輪」讓你的舊單車瞬間升級,變身電動腳踏車。社企流。取自https://www.seinsights.asia/news/131/2850

    林原宏(1996)。層級分析法:理論與應用之探討。測驗統計簡訊,9,23-26。

    林大維(2016)。全球第一個無人駕駛計程車在新加坡開始試營運。國外車市新聞網。取自http://tw.iscarmg.com/index.php/top-news/home-abroad/41511-selfdriving-2016-08-26.

    卓訓榮(2011)。智慧聯網在智慧交通之應用與產業機會。行政院,台北市。

    洪孟瑛(2010)。結合SWOT與ANP之決策方法應用於台灣碳標籤之推行(未出版之碩士論文)。國立臺北科技大學,台北市。

    洪雅筠(2018)。日本政府:計畫2020年奧運期間推無人駕駛汽車。匯流新聞網。取自https://cnews.com.tw/005180609a02/

    柯芷萍(2015)。應用AHP與DEMATEL探討國中家長選擇語文資優班關鍵因素之研究(未出版之碩士論文)。私立中華大學,新竹市。

    胡雪琴(2003)。企業問題複雜度之探討及量化研究--以DEMATEL為分析工具。私立中原大學,桃園市。

    全徽道安(2016)。全徽獲北市府邀請「智慧停車」創新應用世貿資訊月展出。取自http://www.sunsky.com.tw/web_c/html/news/show.aspx?num=56&page=3

    高敬原(2018)。直擊!台灣首部自駕中巴,遇突發狀況反應超靈敏。數位時代。取自https://www.bnext.com.tw/article/49730/itri-first-autonom-ous vehicle-review

    高志強(2016)。英國無人駕駛汽車今年7月上路試車。英國廣播公司。取自https://www.bbc.com/zhongwen/trad/science/2016/01/160129_uk_d-riveless_car_test

    財團法人中華顧問工程司(2018)。歐盟推動ITS之現況介紹(9-1)。取自https://is.gd/4JdAjy

    財團法人中華顧問工程司(2018)。歐盟推動ITS之現況介紹(9-2)。取自https://is.gd/kd7JnT

    翁永全(2018)。全徽道安智慧停車系統 智慧交通的靈魂。經濟日報。取自https://money.udn.com/money/story/10860/3039175

    徐志浩(2018)。英國IoT國家戰略新方向:聚焦IoT硬體、交通、醫療與智慧城市,更要在數座城市內布建IoT網路。IThome。取自https://www.ithome.com.tw/news/120203

    陳俊村(2014)。英「人氣」巴士 以排泄物提煉氣體為動力。大紀元。取自http://www.epochtimes.com/b5/14/11/21/n4301219.htm

    陳明陽(2018)。多倫多測試智慧交通號誌以先進技術改善交通流。電子時報。取自http://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=&cat2=&id=0000521149_3DS2NRSD3NS QJALT558WN&social_share=y

    陳智德(2017)。美國邁阿密戴德郡導入智慧交通燈號。電子時報。取自https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=35&id=0000491816_fvu7e1yt2wfgpc518y8sq

    陳智德(2017)。西班牙桑坦德再推智慧城計畫避免交通事故及減少車輛耗能。電子時報。取自https://www.digitimes.com.tw/iot/article.asp?cat1=20&cat2=30&id=0000492653_v8z79v4w40jrdj4anjsif

    張超(2018)。摩根大通:2020年中国电动汽车销量将占据全球半壁江山。全天侯科技。取自https://awtmt.com/articles/3352864?from=wscn

    張俊(2018)。高德阿裡雲打造城市大腦智慧交通公佈駕駛風險指數。新浪科技。取自https://tech.sina.com.cn/it/2018-09-19/doc-ihkhfqns9769351.shtml

    張學孔、陳雅雯(2016)。應用智慧城市與智慧交通技術推動永續發展。城市發展,20,57-67。

    張冬梅(2018)。日本發布自動駕駛汽車安全指南,為L3、L4立十大規矩。中國汽車報。取自http://auto.gasgoo.com/News/2018/09/15090739739I70062882C601.shtml

    徐村和(1993)。模糊AHP法應用在交通運輸計畫評估之研究(未出版之碩士論文)。私立義守大學,高雄市。

    莊瑞萌(2018)。荷蘭太陽能自行車道測試成功,將繼續進行交通繁忙路段的實測。明日科學。取自https://tomorrowsci.com/environment/荷蘭-太陽能-自行車道-測試成功-交通繁忙-路段-實測/

    黃浩(2017)。從大城到小鎮英國智慧城市怎麼建。新華網。取自http://www.xinhuanet.com/info/201702/13/c_136051335.htm

    黃靖萱(2014)。東京馬路「變聰明」,車禍死亡人數減一半!財訊雙周刊。取自https://www.inside.com.tw/article/4110-tokyo-smart-city

    程遠茜(2018)。渥太華:智慧交通號誌可減空汙。天下雜誌。取自https://futurecity.cw.com.tw/article/298

    辜騰玉(2015)。阿姆斯特丹發放免費IoT裝置,讓市民住家變身大資料感測器。iThome電腦報周刊。取自https://www.ithome.com.tw/news/97980

    雷鋒網(2018)。ZMP收費自駕計程車上線,日本的自動駕駛熱潮要來了? 科技新報。取自https://technews.tw/2018/09/03/zmp-self-diving-taxionline-not-for-free/

    楊淑涵(2012)。企業併購關鍵因子之探討-以AHP與DEMATEL分析(未出版之碩士論文)。淡江大學,台北市。

    鄧振源、曾國雄(1989)。分析層級法的內含特性與應用(下),中國統計學報,27(7),1-20。

    鄭宜蓁(2018)。台灣以物聯網建設智慧城市發展策略之研究(未出版之碩士論文)。國立臺灣師範大學,台北市。

    鄭德麟(2011)。結合AHP以及DEMATEL方法探討葡萄酒購買意願之研究。私立朝陽科技大學,台中市。

    劉淑玲、翁紹仁、陳淑月(2016)。運用決策實驗室分析法探討業界甄選護理人員之關鍵因素。澄清醫護管理雜誌,2(4),30-39。

    劉尚昀(2017)。以城市作為物聯網實驗場域各國打造會思考城市。電子時報。取自https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&id=0000493868_z9y9pn7f5kk8fk9qhkric

    蔣奇廷(2014)省電 荷蘭道路標線會發光。環境資訊中心。取自https://e-info.org.tw/node/98669

    蔡承啟(2018)。日本力推自動駕駛!傳拚2030年佔新車銷量比重3成。MoneyDJ理財網。取https://m.moneydj.com/f1a.aspx?a=ca373fc7-855b-4d79-974d-1925fdec7412

    蔡雅寧(2009)。結合AHP與DEMATEL探討供應商評選準則之優先次序與因果關係-以汽車零配件產業為例。國立彰化師範大學,彰化市。

    謝明珊(2018)。英國劍橋展開智慧號誌燈計畫。電子時報。取自https://reurl.cc/oamAM

    謝宜芳(2011)。整合修正後SIPA與 DEMATEL於台灣通訊服務業服務品質衡量之研究(未出版之博士論文)。私立中華大學科技管理研究所,新竹市。

    羅英姻(2003)。探討不完整資訊成對比較矩陣之AHP問題。國立交通大學。新竹市

    英文部分

    Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409.

    Asel, P. (2018). Transportation-As-A-Service: The Future Of Smart Commuting. Retrieved from https://www.cbinsights.com/research/transportation-service-smart-commuting/

    Ashokkumar, K., Sam, B., Arshadprabhu, R., & Britto (2015). Cloud Based Intelligent Transport System. Procedia Computer Science, 50, 58-63.

    Balsara, S., Jain, P.K., & Ramesh, A. (2019). An integrated approach using AHP and DEMATEL for evaluating climate change mitigation strategies of the Indian cement manufacturing industry. Environmental Pollution, 252, 863-878.

    Belton, V., & Gear, T. (1985). On a short-coming of Saaty`s method of analytic hierarchies. Omega, 11(3), 227-230.

    Borrás, S., & Laatsit, M. (2019). Towards system oriented innovation policy evaluation? Evidence from EU28 member states. Research Policy, 48(1). 312-321.

    Bradford, M. (2001). The Implementation of Enterprise Resource Planning: An Innovation Diffusion Approach. unpublished Ph.D. dissertation, University of Tennessee.

    Burns, J.D., & Kang, J.S. (2012). Comparative economic analysis of supporting policies for residential solar PV in the United States:Solar Renewable Energy Credit (SREC) potential. Energy Policy, 44, 217-225.

    Cello, M., Degano, C., Marchese, M., & Podda, F. (2016). Chapter 14-Smart transportation systems (STSs) in critical conditions. Smart Cities and Home, 291-322.

    Diao, M. (2018). Towards sustainable urban transport in Singapore: Policy instruments and mobility trends. Retrieved from https://doi.org/10.1016/j.tranpol.2018.05.005.

    Dodgson, M., Hughes, A., Foster, J., & Metcalfe, S. (2011). Systems thinking, market failure, and the development of innovation policy: The case of Australia. Research Policy, 40(9), 1145-1156.

    Edquist, C. (2019). Towards a holistic innovation policy: Can the Swedish National Innovation Council (NIC) be a role model? Research Policy, 48(4). 869-879.

    Etzkowitz, H., & Gulbrandsen, M. (1999). Convergence between Europe andAmerica: The Transition from Industrial to Innovation Policy. Journal of Technology Transfer, 24 (2-3), 223-233.

    European Commission (2018). EU developments in Intelligent Transportation Systems. Intelligent transport systems from science to policy and from policy to real world 3rd CISMOB Thematic Conference (Aveiro).

    Furtado, A. (1997). The French system of innovation in the oil industry: some lessons about the role of public policies and sectoral patterns of technological change in innovation networking. Research Policy, 25(8), 1243-1259.

    Gaber, T., Abdelwahab, S., Elhoseny, M., & Hassanien, A., E., (2018). Trust-based secure clustering in WSN-based intelligent transportation systems. Computer Networks, 146, 151-158.

    Gandhi, S., Mangla, Kumar, S.K., Kumar, P., & Kumar, D. (2016). Evaluating factors in implementation of successful green supply chain management using DEMATEL: A case study. International Strategic Management Review, 3(1-2). 96-109.

    George, G., McGahan-Anita, M., & Prabhu, J. (2012). Innovation for Inclusive Growth: Towards a Theoretical Framework and a Research Agenda. Journal of Management Studies, 49(4), 661-683.

    Golestan, K., Soua, R., Karray, F., & Kamel, M.S. (2016). Situation awareness within the context of connected cars: A comprehensive review and recent trends. Information Fusion, 29, 68-83.

    Gora, P., & Rüb, I. (2016). Traffic models for self-driving connected cars. Transportation Research Procedia, 14, 2207-2216.

    Grillitsch, M., Hansen, T., Coenen, L., Miörner, J., & Moodyssone, J. (2019). Inovation policy for system-wide transformation: The case of strategic innovation programmes (SIPs) in Sweden. Research Policy, 48(4), 1048-1061.

    Grover, V. & M. Gosla (1993). The Initiation, Adoption, and Implementation of Telecommunications Technologies in U.S. Organizations. Journal of Management Information Systems, 10(1), 141-164.

    Haque, M. M., Chin, H. C., & Debnath, A. K. (2013). Sustainable, safe, smart—three key elements of Singapore’s evolving transport policies. Transport Policy, 27, 20-31.

    Ho, H. W., & Sumalee, A. (2018). Smarter and more connected: Future intelligent transportation system. IATSS Research, 42(2), 67-71.

    Kergroach, S. (2019). National innovation policies for technology upgrading through GVCs: A cross-country comparison. Technological Forecasting & Social Change, 145, 258-272.

    Kim, T.Y., & Kim, S.R. (1993). An integrated energy policy for Korea: The case of an energy importing country. Energy Policy, 21(10), 1001–1010.

    Liljamo, T., Liimatainen, H., & Pollanen, M. (2018). Attitudes and concerns on automated vehicles. Transportation Research Part F, 59, 24-44.

    Liou, J. J. H., Tzeng, G. H., & Chang, H. C. (2007). Airline safety measurement using a hybrid model. Air Transport Management, 13(4), 243-249.

    Mahajan, V. & Peterson, R.A., (1979). Integrating time and space in technological substitution models. Technological Forecasting and Social Change, 14(3), 231-241.

    Mfenjou, M. L., Ari, A. A. A., Abdou, W., Spies, F., & Kolyang (2018). Methodology and trends for an intelligent transport system indeveloping countries. Sustainable Computing: Informatics and Systems, 19. 96-111.

    Negro, S.O., & Hekkert, M.P. (2008). Explaining the success of Emerging technologies by innovation system functioning: The case of biomass digestion in Germany. Technology Analysis and Strategic Management, 20(4), 456-482

    Nieuwenhuijsen, J., Correia, G. H. d. A., Milakis, D., Arem, B.v., & Daalen, E.v. (2018). Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transportation Research Part C: Emerging Technologies, 86, 300-327.

    Rogers, E.M. (1995). Diffusion of Innovations. New York, NY: The Free Press.

    Rothwell, R., & Zegveld, W. (1981). Industrial Innovation and Public Policy: Preparing for the 1980s and the 1990s. Retrieved from https://www.amazon.com/Industrial-Innovation-Public-Policy-Preparing/dp/0861872509

    Saaty, R. W. (1987). The analytic hierarchy process - what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176.

    Saaty, T.L. (1980). The Analytic Hierarchy Process, New York, NY: McGraw-Hill.

    Saaty, T.L. & Vargas, L.G. (1991). Prediction, projection and forecasting, Boston, MA: Kluwer Academic.

    Sara, M. Stikkelman & M. Herder. (2015). Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods. International Journal of Greenhouse Gas Control, 41, 336-357.

    Schneider, A., & Ingram, H. (1990). Behavioral Assumptions of Policy Tools. Journal of Politics, 52(2), 510-529.

    Schot, J., & Steinmueller, W. E., (2018). Three frames for innovation policy: R&D, systems of innovation and transformative change. Research Policy, 47(9), 1554-1567.

    Seifried, C., Katz, M., & Tutka, P. (2017). A conceptual model on the process of innovation diffusion through a historical review of the United States Armed Forces and their bowl games. Sport Management Review, 20(4), 379-394.

    Singh, M., & Kim, S. (2018). Branch based blockchain technology in intelligent vehicle. Computer Networks, 145(9), 219-213.

    Siuhi, S., & Mwakalonge, J. (2016). Opportunities and challenges of smart mobile applications in transportation. Original Research Paper, 3(6), 582-592.

    Skeete, J. (2018). Level 5 autonomy: The new face of disruption in road transport. Technological Forecasting & Social Change, 134, 22-36.

    Souza, A.M.d., Brennand, C., Yokoyama, R.S., Donato, E.A. Madeira, E. R. M., &Villas, L. A. (2017). Traffic management systems: A classification, review, challenges, and future perspectives. International Journal of Distributed Sensor Networks, 13(4), 1-14.

    Sumalee, A., & Ho, H. W. (2018). Smarter and more connected: Future intelligent transportation system. IATSS Research, 42(2). 67-71.

    Talebian, A., & Mishra, S. (2018). Predicting the adoption of connected autonomous vehicles: A new approach based on the theory of diffusion of innovations. Transportation Research Part C: Emerging Technologies, 95, 363-380.

    Tzeng, G. H., Chiang, C. H., & Li, C. W., (2007). Evaluating intertwined effects in elearning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32, (4), 1028-1044.

    United States Department of Transportation. (2015-2019). Intelligent Transportation Systems Joint Office. Retrieved from https://www.its.dot.gov/research_current.htm

    Wang, X., Zhang, F., Li, B., & Gao, J. (2017). Developmental pattern and international cooperation on intelligent transport system in China. Case Studies on Transport Policy, 5(1), 38-44.

    Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835.

    Yan, J., Liu, J., & Tseng, F. (2018). An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China. Technological Forecasting and Social Change. Retrieved from https://doi.org/10.1016/j.techfore.2018.07.009

    Yılmaz, A.O., & Uslu, T. (2007). Energy policies of Turkey during the period 1923–2003. Energy Policy, 35(1), 258–264.

    無法下載圖示 本全文未授權公開
    QR CODE