簡易檢索 / 詳目顯示

研究生: 唐作豪
Tso-Hao Tang
論文名稱: 長期處理methimazole對海馬回神經突觸可塑性的改變,以及縫核和邊緣系統中血清素受器之影響
Chronic treatment of methimazole altered hippocampal synaptic plasticity and expression of serotonin receptors in raphe nuclei and limbic system
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 87
中文關鍵詞: 甲狀腺素功能低落憂鬱症長期增益現像強迫游泳測試海馬迴
英文關鍵詞: hypothyroidism, depression, LTP, forced-swimming test, hippocampus
論文種類: 學術論文
相關次數: 點閱:255下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲狀腺素為調節生理代謝作用的重要激素,先前動物研究也顯示,成年大鼠甲狀腺機能減退,可能會影響大腦中血清素系統的功能並誘發憂鬱行為的表現。本實驗的主要目的:1. 利用甲狀腺摘除,或是長期在飲水中添加methimazole所建立甲狀腺功能低落的動物模式,並以real-time PCR來觀察大鼠多個腦區(包括縫核、海馬迴、杏仁核及中側前額葉內),相關血清素受體表現量的變化;2. 觀察長期給予methimazole所誘發之動物類憂鬱行為;及3. 長期給予methimazole對大鼠海馬迴神經可塑性的影響。

    結果顯示經大鼠誘發甲狀腺功能低落後,腦中縫核5-HT1A型受器的表現量有增加的情況,並且5-HT2C型受器及血清素轉運蛋白(SERT)在海馬迴中表現量增加。此外,長期給予methimazole會導致大鼠產生類憂鬱行為,並在強迫游泳測試中,放棄掙扎的時間增加。最後,長期給予methimazole會對海馬迴CA1區域之神經可塑性產生影響,包括抑制LTP現象的誘發及增強LTD現象的誘發,LTP現象的抑制可以被d-cycloserine所回復。總結上述結果可以得知,在大鼠中誘發甲狀腺功能低落會改變血清素受器在縫核及海馬迴的表現量,並且對海馬迴之神經可塑性造成影響。
    關鍵字:甲狀腺素功能低落、憂鬱症、血清素、海馬迴、長期增益現象、強迫游泳測試

    Thyroid hormones play an essential and critical role for metabolism, growth, and tissue differentiation in chordate. Thyroid dysfunction such as hypothyroidism is a frequent disease in adults, leading to neurological symptoms and emotional disease including depression. The interaction between thyroid hormones and serotonin of central nervous system may account for it. The present study was aimed to: 1. Determine the expression level of serotonin receptors including 5HT1A, 5HT2A, 5HT2C, 5HT3A, and serotonin transporter (SERT) in hippocampus, amygdala, raphe nuclei, and medial prefrontal cortex in the hypothyroid rat induced by thyroidectomy or chronic treatment of methimazole (MMI) by using real time PCR. 2. Elucidate the depression-like behavior in the chronic MMI treated rats. 3. Evaluate the hippocampal neuroplasticity in the chronic MMI treated rats.

    Results showed the mRNA level of 5-HT1A was increased in raphe nuclei, and the mRNAs of 5-HT2C receptor and SERT were increased in hippocampus of the thyroidectomized or MMI-treated animals. Furthermore, chronic MMI treatment also induced depression-like behavior in the rats that showed a longer time of immobility in the forced-swimming test. Additionally, the glutamatergic neuroplasity in the hippocampal CA1 region was also altered in the chronic MMI treated rats. The hippocampal LTP formation and LTD had been impaired and enhanced respectively. These changes can be restored by administration of partial glutamate NMDA receptor agonist d-cycloserine. In conclusion, we found that hypothyroid status changed expression of serotonin receptors in the raphe nuclei and limbic system, and significantly affected glutamatergic neuroplasticity.
    Keywords: hypothyroididm, serotonin, depression, hippocampus, LTP, forced-swimming test

    Abbreviation Table ___________________________________ III List of Figures ______________________________________ IV Abstract in Chinese __________________________________ V Abstract in English __________________________________ VI Chapter1 Introduction _________________________________________ 1 Preface ______________________________________________ 2 1.1 The regulation of thyroid hormones _______________ 2 1.2 The metabolism of thyroid hormones _______________ 3 1.3 The effect of thyroid hormones in mind ___________ 4 1.4 Thyroid hormones and neurotransmitters ___________ 5 1.5 Depression and antidepressant ____________________ 7 1.6 Hippocampus and depression _______________________ 11 1.7 The role of thyroid hormones in depression _______ 12 1.8 Aim of this studies ______________________________ 14 2. Table _____________________________________________ 15 Chapter 2 Thyroidectomy induced hypothyroid status on the expression of serotonin receptors in raphe nuclei and limbic system ______________________________________________________ 17 1. Introduction ______________________________________ 18 2. Materials and methods _____________________________ 19 3. Results ___________________________________________ 22 4. Discussion ________________________________________ 24 5. Tables and figures ________________________________ 32 Chapter 3 The distribution of serotoninergic receptors in hypothyroid female rats induced by methimazole treatment and the neuroplasity in hippocampus __________________________ 36 1. Introduction ______________________________________ 37 2. Materials and methods _____________________________ 40 3. Results ___________________________________________ 45 4. Discussion ________________________________________ 51 5. Figures ___________________________________________ 56 Chapter 4 Summary and conclusion _______________________________ 63 References ___________________________________________ 68 Appendix (published papers) __________________________ 87

    Abedelhaffez AS, Hassan A (2013) Brain derived neurotrophic factor and oxidative stress index in pups with developmental hypothyroidism: Neuroprotective effects of selenium. Acta Physiologica Hungarica. 100:197-210.
    Abelaira HM, Réus GZ, Neotti MV, Quevedo J (2014) The role of mTOR in depression and antidepressant responses. Life sciences. 101:10-14.
    Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiological reviews. 85:523-569.
    Aghajanian GK. 1995. Electrophysiology of serotonin receptor subtypes and signal transduction pathways. In: Bloom FR, Kupfer, DJ. (Eds.), Psychopharmacology: The fourth generation of progress. Raven. New York. 1451-1459
    Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science. 317:819-823.
    Altamura AC, Moro AR, Percudani M (1994) Clinical pharmacokinetics of fluoxetine. Clinical pharmacokinetics. 26:201-214.
    Altshuler LL, Bauer M, Frye MA, Gitlin MJ, Mintz J, Szuba MP, Leight KL, Whybrow PC (2001) Does thyroid supplementation accelerate tricyclic antidepressant response? A review and meta-analysis of the literature. The American journal of psychiatry. 158:1617-1622.
    Alva-Sánchez C, Becerril A, Anguiano B, Aceves C, Pacheco-Rosado J (2009) Participation of NMDA-glutamatergic receptors in hippocampal neuronal damage caused by adult-onset hypothyroidism. Neuroscience letters. 453:178-181.
    Alva-Sánchez C, Rodríguez A, Villanueva I, Anguiano B, Aceves C, Pacheco-Rosado J (2014) The NMDA receptor antagonist MK-801 abolishes the increase in both p53 and Bax/Bcl2 index induced by adult-onset hypothyroidism in rat. Acta Neurobiologiae Experimentalis. 74:111-117.
    Alzoubi KH, Alkadhi KA (2007) A critical role of CREB in the impairment of late-phase LTP by adult onset hypothyroidism. Experimental neurology. 203:63-71.
    Alzoubi KH, Aleisa AM, Alkadhi KA (2007) Adult-onset hypothyroidism facilitates and enhances LTD: Reversal by chronic nicotine treatment. Neurobiology of disease. 26:264-272.
    Ambrogini P, Cuppini R, Ferri P, Mancini C, Ciaroni S, Voci A, Gerdoni E, Gallo G (2005) Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology. 81:244-253.
    Aronson R, Offman HJ, Joffe RT, Naylor CD (1996) Triiodothyronine augmentation in the treatment of refractory depression. A meta-analysis. Archives of general psychiatry. 53:842-848.
    Artigas F (2013) Serotonin receptors involved in antidepressant effects. Pharmacology & therapeutics. 137:119-131.
    Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V (1976) "Serotonin depression"-A biochemical subgroup within the affective disorders? Science. 191:478-480.
    Ates-Alagoz Z, Adejare A (2013) NMDA Receptor Antagonists for Treatment of Depression. Pharmaceuticals. 6:480-499.
    Bétry C, Etiévant A, Oosterhof C, Ebert B, Sanchez C, Haddjeri N (2011) Role of 5-HT3 receptors in the antidepressant response. Pharmaceuticals. 4:603-629.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology. 38:1083-1152.
    Bauer M, Heinz A, Whybrow PC (2002) Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Molecular Psychiatry. 7.
    Baumgartner A (2000) Thyroxine and the treatment of affective disorders: an overview of the results of basic and clinical research. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum. 3:149-165.
    Becker S, Wojtowicz JM (2007) A model of hippocampal neurogenesis in memory and mood disorders. Trends in cognitive sciences. 11:70-76.
    Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends in pharmacological sciences. 15:220-226.
    Blier P, de Montigny C, Chaput Y (1987) Modifications of the serotonin system by antidepressant treatments: implications for the therapeutic response in major depression. Journal of clinical psychopharmacology. 7:24S-35S.
    Blier P, Pineyro G, El Mansari M, Bergeron R, Montigny Cd (1998) Role of Somatodendritic 5‐HT Autoreceptors in Modulating 5‐HT Neurotransmissiona. Annals of the New York Academy of Sciences. 861:204-216.
    Boda E, Pini A, Hoxha E, Parolisi R, Tempia F (2009) Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. Journal of molecular neuroscience. 37:238-253.
    Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, Arango V (2012) Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biological psychiatry. 72:562-571.
    Boothman L, Raley J, Denk F, Hirani E, Sharp T (2006) In vivo evidence that 5-HT2C receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. British journal of pharmacology. 149:861-869.
    Bradley P, Engel G, Feniuk W, Fozard J, Humphrey P, Middlemiss D, Mylecharane E, Richardson B, Saxena P (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 25:563-576.
    Burnet PWJ, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Research. 676:157-168.
    Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 387:303-308.
    Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. The American journal of psychiatry. 161:598-607.
    Carroll BJ, Martin FI, Davies B (1968) Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. Br Med J. 3:285-287.
    Chakraborty G, Magagna-Poveda A, Parratt C, Umans JG, MacLusky NJ, Scharfman HE (2012) Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU). Endocrinology. 153:1311-1316.
    Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Research. 561:51-60.
    Chan S, Kilby MD (2000) Thyroid hormone and central nervous system development. The Journal of endocrinology. 165:1-8.
    Christie BR, Cameron HA (2006) Neurogenesis in the adult hippocampus. Hippocampus. 16:199-207.
    Courtin F, Chantoux F, Francon J (1988) Thyroid hormone metabolism in neuron-enriched primary cultures of fetal rat brain cells. Molecular and cellular endocrinology. 58:73-84.
    Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR, Charney DS (1994) Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Archives of general psychiatry. 51:865-874.
    Demartini B, Masu A, Scarone S, Pontiroli AE, Gambini O (2010) Prevalence of depression in patients affected by subclinical hypothyroidism. Panminerva Med. 52:277-282.
    Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, Pompeu FA, Coutinho ESF, Laks J (2009) Exercise and mental health: many reasons to move. Neuropsychobiology. 59:191-198.
    Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA (2005) Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Molecular and cellular neurosciences. 29:414-426.
    Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1998) Selective blockade of serotonin 2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology. 37:265-272.
    Dietrich JW, Landgrafe G, Fotiadou EH (2012) TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. Journal of thyroid research. 2012:351864.
    Duman RS, Li N, Liu R-J, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. 62:35-41.
    Eravci M, Pinna G, Meinhold H, Baumgartner A (2000) Effects of pharmacological and nonpharmacological treatments on thyroid hormone metabolism and concentrations in rat brain. Endocrinology. 141:1027-1040.
    Ermolinsky B, Pacheco Otalora LF, Arshadmansab MF, Zarei MM, Garrido-Sanabria ER (2008) Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: A comparative real-time PCR analysis. Brain research. 1226:173-180.
    Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? Journal of psychiatry & neuroscience : JPN. 31:84-92.
    Escobar GMd, Obregón MaJ, Rey FEd (2004) Maternal thyroid hormones early in pregnancy and fetal brain development. Best practice & research Clinical endocrinology & metabolism. 18:225-248.
    Gangisetty O, Reddy DS (2009) The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity. Journal of neuroscience methods. 181:58-66.
    Ge JF, Peng L, Hu CM, Wu TN (2012) Impaired Learning and Memory Performance in a Subclinical Hypothyroidism Rat Model Induced by Hemi-Thyroid Electrocauterisation. Journal of neuroendocrinology. 24:953-961.
    Gerges NZ, Alkadhi KA (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus. 14:40-45.
    Gerges NZ, Stringer JL, Alkadhi KA (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain research. 922:250-260.
    Goodwin FK, Post RM (1983) 5-hydroxytryptamine and depression: a model for the interaction of normal variance with pathology. British journal of clinical pharmacology. 15 Suppl 3:393S-405S.
    Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA, Jr. (2007) Performance on a virtual reality spatial memory navigation task in depressed patients. The American journal of psychiatry. 164:516-519.
    Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? Journal of clinical psychiatry. 64:1465-1475.
    Greenwood BN, Strong PV, Loughridge AB, Day HE, Clark PJ, Mika A, Hellwinkel JE, Spence KG, Fleshner M (2012) 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise. PloS one. 7:e46118.
    Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nature reviews Neuroscience. 1:67-73.
    Haenisch B, Bönisch H (2011) Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacology & Therapeutics. 129:352-368.
    Heinz A, Ragan P, Jones DW, Hommer D, Williams W, Knable MB, Gorey JG, Doty L, Geyer C, Lee KS, Coppola R, Weinberger DR, Linnoila M (1998) Reduced central serotonin transporters in alcoholism. The American journal of psychiatry. 155:1544-1549.
    Henley WN, Chen X, Klettner C, Bellush LL, Notestine MA (1991) Hypothyroidism increases serotonin turnover and sympathetic activity in the adult rat. Canadian journal of physiology and pharmacology. 69:205-210.
    Hirota K, Lambert D (1996) Ketamine: its mechanism (s) of action and unusual clinical uses. British journal of anaesthesia. 77:441-444.
    Hong T, Huang T, Qiu X (1992) Effects of different thyroid states on 5-HT1A receptor in adult rat brain [Article in Chinese]. Sheng li xue bao:[Acta physiologica Sinica]. 44:75-80.
    Hoyer D, Clarke DE, Fozard JR, Hartig P, Martin GR, Mylecharane EJ, Saxena PR, Humphrey P (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacological reviews. 46:157-203.
    Hsu YL (2013) Effects of fluoxetine treatment in thyroidectomized rats. In: Dept. LifeScience. Taipei: National Taiwan Normal University.
    Ito JM, Valcana T, Timiras PS (1977) Effect of hypo-and hyperthyroidism on regional monoamine metabolism in the adult rat brain. Neuroendocrinology. 24:55-64.
    Jobe PC, Dailey JW, Wernicke JF (1999) A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Critical reviews in neurobiology. 13:317-356.
    Kansagra SM, McCudden CR, Willis MS (2010) The Challenges and Complexities of Thyroid Hormone Replacement. Lab Medicine. 41:338-348.
    Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PloS one. 5:e8809.
    Kragie L, Smiehorowski R (1993) Measures of skeletal muscle calcium channels and acetylcholine receptors in thyroidectomized rats. Endocrine research. 19:207-219.
    Kulikov A, Torresani J, Jeanningros R (1997) Experimental hypothyroidism increases immobility in rats in the forced swim paradigm. Neuroscience letters. 234:111-114.
    Kulikov A, Moreau X, Jeanningros R, gine e (1999) Effects of experimental hypothyroidism on 5-HT1A, 5-HT2A receptors, 5-HT uptake sites and tryptophan hydroxylase activity in mature rat brain. Neuroendocrinology. 69:453-459.
    Kulikov AV, Jeanningro R (2001) The effects of hypothyroidism on 5-HT1A and 5-HT2A receptors and the serotonin transporter protein in the rat brain. Neuroscience and behavioral physiology. 31:445-449.
    Kuželová H, Ptáček R, Macek M (2009) The serotonin transporter gene (5-HTT) variant and psychiatric disorders: review of current literature. Neuro endocrinology letters. 31:4-10.
    Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M, Lanfumey L (2000) Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology. 39:110-122.
    Lee PR, Brady D, Koenig JI (2003) Thyroid Hormone Regulation of N‐Methyl‐D‐Aspartic Acid Receptor Subunit mRNA Expression in Adult Brain. Journal of Neuroendocrinology. 15:87-92.
    Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nature reviews Neuroscience. 7:179-193.
    MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America. 100:1387-1392.
    Madeira MD, Cadete-Leite A, Andrade JP, Paula-Barbosa MM (1991) Effects of hypothyroidism upon the granular layer of the dentate gyrus in male and female adult rats: a morphometric study. The Journal of comparative neurology. 314:171-186.
    Maes M, Meltzer H. 1995. The serotonin hypothesis of major depression. In: Bloom FR, Kupfer, D.J. (Eds.), Psychopharmacology: The fourth generation of progress. Raven. New York. 933-934
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20:9104-9110.
    Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L, Sanacora G, Owens MJ, Nemeroff CB, Rajeevan N, Baldwin RM, Seibyl JP, Innis RB, Charney DS (1998) Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biological psychiatry. 44:1090-1098.
    Martin D, Lodge D (1985) Ketamine acts as a non-competitive< i> N</i>-methyl-d-aspartate antagonist on frog spinal cord< i> in vitro</i>. Neuropharmacology. 24:999-1003.
    Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biological psychiatry. 48:830-843.
    McEwen BS (2003) Mood disorders and allostatic load. Biological psychiatry. 54:200-207.
    Mengod G, Pompeiano M, Palacios J (1990) Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain research. 524:139-143.
    Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology. 37:953-955.
    Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus. 16:233-238.
    Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernandez-Lamo I, Garcia-Verdugo JM, Bernal J, Guadano-Ferraz A (2006) Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Molecular psychiatry. 11:361-371.
    Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience. 54:701-717.
    Morilak DA, Somogyi P, Lujan-Miras R, Ciaranello RD (1994) Neurons expressing 5-HT2 receptors in the rat brain: neurochemical identification of cell types by immunocytochemistry. Neuropsychopharmacology. 11:157-166.
    Morreale de Escobar G, Obregon MJ, Ruiz de Ona C, Escobar del Rey F (1988) Transfer of thyroxine from the mother to the rat fetus near term: effects on brain 3,5,3'-triiodothyronine deficiency. Endocrinology. 122:1521-1531.
    Moskal JR, Burch R, Burgdorf JS, Kroes RA, Stanton PK, Disterhoft JF, Leander JD (2014) GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert opinion on investigational drugs. 23:243-254.
    Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiological Reviews. 70:513-565.
    Obregón MaJ, Mallol J, Pastor R, Escobar GMd, Rey FEd (1984) l-THYROXINE AND 3,5,3’-TRII000-l-THYRONINE IN RAT EMBRYOS BEFORE ONSET OF FETAL THYROID FUNCTION. Endocrinology. 114:305-307.
    Padovan C, Guimaraes F (2004) Antidepressant-like effects of NMDA-receptor antagonist injected into the dorsal hippocampus of rats. Pharmacology Biochemistry and Behavior. 77:15-19.
    Papakostas GI, Cooper-Kazaz R, Appelhof BC, Posternak MA, Johnson DP, Klibanski A, Lerer B, Fava M (2009) Simultaneous initiation (coinitiation) of pharmacotherapy with triiodothyronine and a selective serotonin reuptake inhibitor for major depressive disorder: a quantitative synthesis of double-blind studies. International clinical psychopharmacology. 24:19-25.
    Papp M, Moryl E (1992) New evidence for the antidepressant activity of MK-801, a non-competitive antagonist of NMDA receptors. Polish journal of pharmacology. 45:549-553.
    Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY, Van Heertum RL, Arango V, Mann JJ (2006) Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biological psychiatry. 59:106-113.
    Poncelet M, Perio A, Simiand J, Gout G, Soubrie P, Le Fur G (1995) Antidepressant-like effects of SR 57227A, a 5-HT3 receptor agonist, in rodents. Journal of Neural Transmission/General Section JNT. 102:83-90.
    Prange AJ, Jr., Wilson IC, Rabon AM, Lipton MA (1969) Enhancement of imipramine antidepressant activity by thyroid hormone. The American journal of psychiatry. 126:457-469.
    Quesseveur G, Nguyen HT, Gardier AM, Guiard BP (2012) 5-HT2 ligands in the treatment of anxiety and depression. Expert opinion on investigational drugs. 21:1701-1725.
    Rastogi RB, Singhal RL (1978) The effect of thyroid hormone on serotonergic neurones: Depletion of serotonin in discrete brain areas of developing hypothyroid rats. Naunyn-Schmiedeberg's archives of pharmacology. 304:9-13.
    Redei EE, Solberg LC, Kluczynski JM, Pare WP (2001) Paradoxical hormonal and behavioral responses to hypothyroid and hyperthyroid states in the Wistar-Kyoto rat. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 24:632-639.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 301:805-809.
    Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of general psychiatry. 57:925-935.
    Savard P, Merand Y, Di Paolo T, Dupont A (1983) Effects of thyroid state on serotonin, 5-hydroxyindoleacetic acid and substance P contents in discrete brain nuclei of adult rats. Neuroscience. 10:1399-1404.
    Savitz JB, Drevets WC (2013) Neuroreceptor imaging in depression. Neurobiology of disease. 52:49-65.
    Scott BW, Wojtowicz JM, Burnham WM (2000) Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Experimental neurology. 165:231-236.
    Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, Rafi-Tari S (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage. 22:409-418.
    Shrestha S, Hirvonen J, Hines CS, Henter ID, Svenningsson P, Pike VW, Innis RB (2012) Serotonin-1A receptors in major depression quantified using PET: Controversies, confounds, and recommendations. Neuroimage. 59:3243-3251.
    Siever LJ, Davis KL (1985) Overview: toward a dysregulation hypothesis of depression. The American journal of psychiatry. 142:1017-1031.
    Silveira H, Moraes H, Oliveira N, Coutinho ESF, Laks J, Deslandes A (2013) Physical exercise and clinically depressed patients: a systematic review and meta-analysis. Neuropsychobiology. 67:61-68.
    Silveira H, Deslandes AC, de Moraes H, Mouta R, Ribeiro P, Piedade R, Laks J (2010) Effects of exercise on electroencephalographic mean frequency in depressed elderly subjects. Neuropsychobiology. 61:141-147.
    Singhal RL, Rastogi RB, Hrdina PD (1975) Brain biogenic amines and altered thyroid function. Life sciences. 17:1617-1626.
    Spoida K, Masseck OA, Deneris ES, Herlitze S (2014) Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice. Proceedings of the National Academy of Sciences. 111:6479-6484.
    Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G (1998) Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression—postmortem evidence for decreased serotonin activity. The Journal of neuroscience. 18:7394-7401.
    Strawn JR, Ekhator NN, D'Souza BB, Geracioti TD, Jr. (2004) Pituitary-thyroid state correlates with central dopaminergic and serotonergic activity in healthy humans. Neuropsychobiology. 49:84-87.
    Tanaka K, Inada M, Ishii H, Naito K, Nishikawa M, Mashio Y, Imura H (1981) Inner ring monodeiodination of thyroxine and 3,5,3'-L-triiodothyronine in rat brain. Endocrinology. 109:1619-1624.
    Tejani-Butt S, Yang J, Kaviani A (1993) Time course of altered thyroid states on 5-HT1A receptors and 5-HT uptake sites in rat brain: an autoradiographic analysis. Neuroendocrinology. 57:1011-1018.
    Trajkovska V, Santini MA, Marcussen AB, Thomsen MS, Hansen HH, Mikkelsen JD, Arneberg L, Kokaia M, Knudsen GM, Aznar S (2009) BDNF downregulates 5-HT2A receptor protein levels in hippocampal cultures. Neurochemistry international. 55:697-702.
    Uchida K, Yonezawa M, Nakamura S, Kobayashi T, Machida T (2005) Impaired neurogenesis in the growth-retarded mouse is reversed by T3 treatment. Neuroreport. 16:103-106.
    Upadhyaya L, Agrawal JK (1993) Effect of L-thyroxine and carbimazole on brain biogenic amines and amino acids in rats. Endocrine research. 19:87-99.
    Vamvakides A (1997) [D-cycloserine is active in the adult mouse and inactive in the aged mouse, in the forced swim test]. In: Annales pharmaceutiques francaises, pp 209-212.
    van Hooft JA, Vijverberg HP (2000) 5-HT< sub> 3</sub> receptors and neurotransmitter release in the CNS: a nerve ending story? Trends in neurosciences. 23:605-610.
    Van Praag HM, Korf J, Puite J (1970) 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature. 225:1259-1260.
    Vicente MA, Zangrossi Jr H (2014) Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology. 79:127-135.
    Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. The American journal of psychiatry. 161:1957-1966.
    Vulsma T, Gons MH, de Vijlder JJ (1989) Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. The New England journal of medicine. 321:13-16.
    Weiss JM, Goodman PA, Losito BG, Corrigan S, Charry JM, Bailey WH (1981) Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Research Reviews. 3:167-205.
    Wheatley D (1972) Potentiation of amitriptyline by thyroid hormone. Archives of general psychiatry. 26:229-233.
    Whybrow PC, Prange AJ, Jr., Treadway CR (1969) Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement. Archives of general psychiatry. 20:48-63.
    Wiersinga WM, DeGroot L (2010) Adult hypothyroidism. Thyroid Disease Manager Available at: www thyroidmanager org/chapter/adulthypothyroidism/# toc-9-2-definition-and-epidemiology-of-hypothyroidism Accessed: Nov. 16:2011.
    Wilcoxon JS, Nadolski GJ, Samarut J, Chassande O, Redei EE (2007) Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behavioural brain research. 177:109-116.
    Wilson IC, Prange AJ, Jr., McClane TK, Rabon AM, Lipton MA (1970) Thyroid-hormone enhancement of imipramine in nonretarded depressions. The New England journal of medicine. 282:1063-1067.
    Wiskott L, Rasch MJ, Kempermann G (2006) A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus. 16:329-343.
    Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. Journal of Comparative Neurology. 351:357-373.
    Yuan PQ, Yang H (2005) Hypothyroidism increases Fos immunoreactivity in cholinergic neurons of brain medullary dorsal vagal complex in rats. American Journal of Physiology: Endocrinology and Metabolism. 289:E892-E899.
    Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY (2013) NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 40:12-17.
    Zhuravliova E, Barbakadze T, Jojua N, Zaalishvili E, Shanshiashvili L, Natsvlishvili N, Kalandadze I, Narmania N, Chogovadze I, Mikeladze D (2012) Synaptic and Non-Synaptic Mitochondria in Hippocampus of Adult Rats Differ in Their Sensitivity to Hypothyroidism. Cellular and molecular neurobiology. 32:1311-1321.

    下載圖示
    QR CODE