簡易檢索 / 詳目顯示

研究生: 吉旺
SHINDE JIVAN SARJERAO
論文名稱: 鈀金屬催化末端炔基芳基化與銅金屬催化非對稱尿素合成生物學相關雜環的策略
Pd-Catalyzed Arylation of Terminal Alkyne and Cu-Catalyzed Unsymmetrical Urea Strategies for the Synthesis of Biologically Relevant Heterocycles
指導教授: 姚清發
Yao, Ching-Fa
口試委員: 姚清發
Yao, Ching-Fa
柳如宗
Liu, Ju-Tsung
林文偉
Lin, Wenwei
劉維民
Liu, Wei-Min
葉怡均
Yeh, Yi-Chun
口試日期: 2024/01/11
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 290
中文關鍵詞: 鈀(II)催化劑對位選擇性加成炔基1,3-二酮炔1,3-二酮烯吡喃去苯甲 醯炔基苯醚炔基N -甲基苯胺炔基N-甲基磺胺炔基N-甲基苯甲醯胺N-炔基吲哚乙酸鉀銅碘吲哚苯胺雙吲哚苯甲醯疊氮化物乙酸乙酯
英文關鍵詞: Palladium (II) catalyst, Regioselective addition, Propargylic 1, 3 dicarbonyl alkyne, 1, 3 dicarbonyl alkene, Pyran, Debenzoylation, Propargylic Phenyl Ether, Propargylic N-methyl Phenyl Amine, Propargylic N-methyl sulfonamide, Propargylic N-methyl benzamide,, N-Propargylic indole, Potassium Acetate, Copper iodide, Indole, Aniline, bisIndole, benzoyl azide, Urea, Ethyl Acetate
DOI URL: http://doi.org/10.6345/NTNU202400123
論文種類: 學術論文
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈀金屬催化末端炔基芳基化與銅金屬催化非對稱尿素合成生物學相關雜環的策略
    本論文的內容分為五個章節(A、B、C、D和E)
    A章節分為四個部分。第一部分介紹了使用苯硼酸的過渡金屬催化氫芳基化反應對炔烴的應用。接下來,第二部分聚焦於以Rh和Ni催化劑進行的氫芳基化反應的先前報告和深度分析。下一部分描述了二酮化合物的末端炔烴的鈀(II)催化C-C鍵結和環化反應。此外,最後一部分介紹並合成了從次級胺和醯胺疊氮化物中使用銅催化劑合成非對稱脲。
    B章節中描述了鈀催化下芳基硼酸對1,3-二酮化合物末端炔烴的對位選擇性(Markovnikov's)加成,且進一步描述了1,3-二羰基烯烴在三取代的6 元吡喃環上的應用,以及(E )-4-亞甲基-1,6-二苯基己-5-en-1-酮合成,並詳細討論了機制研究。
    C章節中包含了從吲哚/胺和苯甲醯疊氮化物中使用銅催化進行更環保、溫和和高效的非對稱脲衍生物的合成。也可應用在多種吲哚衍生物、胺和苯甲醯疊氮化物底物,具有良好的官基容忍性。且透過機制和表徵數據研究了雙吲哚對苯甲酰疊氮化物的反應性和克級尿素合成。
    D章節重點在於「在無需定向基下透過鈀(II)催化末端炔烴的區域選擇性氫芳基化:烯基、同烯丙基和1,3-二烯體系的合成。」文中描述了對機制的詳細研究,包括對照實驗和特性數據
    E章節中描述了鈀(II)催化硼酸與苯甲酰胺、磺酰胺和吲哚的炔丙基加成合成烯丙胺和烯胺,並提供了反應機理研究的進一步理論計算和表徵數據。

    Palladium(II)-Catalyzed Arylation of terminal alkyne and Cu-Catalyzed Unsymmetrical Urea Strategies for the Synthesis of Biologically Relevant Heterocycles
    The contents of this dissertation are divided into five chapters (A, B, C, D & E).
    Chapter [A] is subdivided into four parts. Part one is the introduction of transition metal catalyzed hydroarylation of alkyne by using phenyl boronic acid. Next, second part is focusing on a previous report and depth analysis of hydroarylation reaction using Rh and Ni catalyst. Next part is a palladium (II) catalyzed C-C coupling and cyclization reaction of terminal alkyne of dicarbonyl compound. The last part is the introduction and synthesis of unsymmetrical urea from sec. amine and acyl azide by using Cu-catalyst.
    Chapter [B] in this chapter main focus on palladium-catalyzed regioselective(Markovnikov's) addition of aryl boronic acid to terminal alkyne of 1,3-dicarbonyl compounds is described further application of 1,3-dicarbonyl alkene for trisubstituted 6-membered pyran ring and (E)-4-methylene-1,6-diphenylhex-5-en-1-one synthesis with details discussion of mechanistic study described.
    Chapter [C] this chapter contains Cu-catalyzed greener, mild and efficient unsymmetrical urea derivatives synthesis from indole/amine and benzoyl azide. A number of indole derivatives, amines and benzoyl azide substrates were successfully employed with good functional group tolerance. Reactivity of bis indole towards benzoyl azide and gram scale urea synthesis were investigated with mechanism and characterization data.
    Chapter [D] was emphasis“Palladium (II)-Catalyzed Regioselective Hydroarylation/Hydroalkenylation of Terminal Alkynes via Carbopalladation without a Directing Group: Synthesis of Allylic, Homoallylic and 1,3-Diene Systems” The details of mechanistic study with control experiment and characterization data described.
    Chapter [E] in this part palladium (II)-catalyzed addition of boronic acid to propargylic alkyne of benzamide, sulfonamide and indole for allylic amide and amine synthesis described and further theoretical calculations for the reaction mechanism studies presented with characterization data.

    Abstract vii-viii Abbreviations xiv-xvi Chapter [A] A-I. Introduction of metal catalyzed hydroarylation reactions 01-02 A-II. Introduction and Rh, Ni catalyzed hydroarylation reaction for di or tri-substituted alkene synthesis 02-05 A-III. Introduction and Pd-catalyzed hydroarylation reaction for di or tri-substituted Alkene synthesis 05-08 A-IV. Transition metal catalyzed C-C coupling and cyclization reaction of terminal alkyne of dicarbonyl compound. 08-09 A-V. Metal catalyzed unsymmetrical urea/amide synthesis. 09-14 A-VI. urea/amide Applications as a precursor. 15-17 A-VII. References 17-20 Chapter [B] B-I. Pd-Catalyzed regioselective (Markovnikov) Addition of aryl boronic acids to terminal alkynes of 1, 3-dicarbonyl compounds and cyclization/debenzoylation of olefinic dicarbonyl: Access to arylated Pyran and (E)-4-methylene-1,6-diphenylhex-5-en-1-one. 21 B-II. Introduction 21-22 B-III. Result and discussions 22-30 B-IV. Conclusion 30 B-V. Experimental Section 30-52 B-VI. References 53-57 Chapter [C] C-I. Synthesis of unsymmetrical urea derivatives via Cu-catalysed reaction of acylazide and secondary amine 58 C-II. Introduction 58-60 C-III. Result and discussions 60-66 C-IV.Conclusion 66 C-V. Experimental Section 67-75 C-VI. References 75-78 Chapter [D] D-I Palladium(II)-Catalyzed Regioselective Hydroaryla-tion/Hydroalkenylation of Terminal Alkynes via Carbopalladation without a Directing Group: Synthesis of Allylic, Homoallylic and 1,3-Diene Systems 79 D-II. Introduction 79-81 D-III. Result and discussion 81-87 D-IV. Conclusion 88 D-V. Experimental Section 88-110 D-VI. References 110-114 Chapter [E] E-I. Palladium (II)-catalyzed addition of boronic acid to propargylic alkyne of benzamide, sulfonamide and indole for allylic amide and amine synthesis described and further theoretical calculations for the reaction mechanism studies presented with characterization data. 115-119 X- ray Crystallographic Data 120-152 1H and 13C NMR Spectral Copies for all compounds 153-289 List of Publication 290

    A-VII. References:
    1) (a) Ackermann, L.; Gunnoe, T. B.; Habgood, L. G. Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds; Wiley-VCH: Weinheim, Germany, 2018; pp 305−359. (b) Xulun Wang, Lihong Zhou and Wenjun Lu Hydroarylation of Alkynes via Aryl C–H Bond Cleavage Current Organic Chemistry, 2010, 14, 289-307. (c) Yamamoto, Y. Synthesis of heterocycles via transition metal-catalyzed hydroarylation of alkynes. Chem. Soc. Rev. 2014, 43, 1575−1600. (d) Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of Arenes and Heteroarene with Alkynes. Chem. Rev. 2016, 116, 5894−5986. (e) Corpas, J.; Mauleón, Pablo.; Arrayás, R. G.; Carretero, J. C. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal. 2021, 11, 7513−7551. (f) Thowfik, S.; Afsina, C. M. A., Anilkumar, G.; Ruthenium-catalyzed hydroarylation reactions as the strategy towards the synthesis of alkylated arenes and substituted alkenes RSC Adv., 2023, 13, 6246–6263. (g) Ghosh, T.; Chatterjee, J.; Bhakta, S.; Gold-catalyzed hydroarylation reactions: a comprehensive overview Org. Biomol. Chem., 2022, 20, 7151–7187. (h) Angelis, M. De.; Iazzetti, A.; Serraiocco, A.; Ciogli, A.; Asymmetric Hydroarylation Reactions Catalyzed by Transition Metals: Last 10 Years in a Mini Review Catalysts 2022, 12, 1289.
    2) (a) Yin, L.; Liebscher, J.; Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007, 107, 133−173. (b) Ruiz-Castillo, P.; Buchwald, S. L.; Applications of Palladium-Catalyzed C−N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564−12649.
    3) (a) Yang, S-D.; Sun, C-L.; Fang, Z.; Li, B-J.; Li, Y-Z.; Shi, Z-J. Palladium-Catalyzed Direct Arylation of (Hetero)Arenes with Aryl Boronic Acids Angew.Chem.Int.Ed. 2008, 47, 1473 –1476 (b) Xu, S.; Huang, B.; Qiao, G.; Huang, Z.; Zhang, Z.; Li, Z.; Wang, P.; Zhang, Z. Rh(III)-Catalyzed C−H Activation of Boronic Acid with Aryl Azide Org.Lett. 2018, 20, 5578−5582 (c) El-Maiss, J.; Dine, T. M. E., Lu, C-S.; Karamé, I.; Kanj, A.; Polychronopoulou, K.; Shaya, J. Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings Catalysts 2020, 10, 296.
    4) (a) Wang, C-Q.; Feng, C.; Loh, T-P.; RhIII-Catalyzed Hydroarylation of Internal Alkynes through C-H Bond Activation Asian J. Org. Chem. 2016, 5, 1002–1007. (b) Li, T.; Yang, Y.; Luo, B.; Li, B.; Zong, L.; Kong, W.; Yang, H.; Cheng, X.; Zhang, L. A Bifunctional Ligand Enables Gold-Catalyzed Hydroarylation of Terminal Alkynes under Soft Reaction Conditions. Org. Lett. 2020, 22, 6045−6049.
    5) Gupta, A. K.; Kim, K. S.; Oh. C. H.; Pd-Catalyzed Addition of Organoboronic Acids to Alkynes at Room Temperature Synlett 2005, No. 3, 457–460.
    6) (a) Nevado, C.; Echavarren, A. M.; Transition Metal-Catalyzed Hydroarylation of Alkynes Synthesis 2005, No. 2, 167–182. (b) Wang, D.; Dong, B.; Wang, Y.; Qian, J.; Zhu, J.; Zhao, Y.; Shi, Z.; Rhodium-catalysed direct hydroarylation of alkenes and alkynes with phosphines through phosphorous-assisted C−H activation Nat. Commun 2019, 10, 3539.
    7) (a) Kaufman T. S.; The Multiple Faces of Eugenol. A Versatile Starting Material and Building Block for Organic and Bio-Organic Synthesis and a Convenient Precursor Toward Bio-Based Fine Chemicals J. Braz. Chem. Soc. 2015, 26, 6. (b) Chang, M-Y.; Wang, S-Y.; Pai, C-L.; New synthesis of SKF 89976A, Tetrahedron Letters 2006, 47, 6389–6392.
    8) (a) Yorimitsu, H.; Kotora, M.; Patil, N. T.; Special Issue: Recent Advances in Transition-Metal Catalysis, Chem. Rec. 2021, 21, 3335–3337. (b) López, O.; Padrón, J. M.; Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry Catalysts 2022, 12, 164. (c) Maouche, C.; Zhou, Yazhou.; Wang, Yongying.; Yang, Juan.; Recent advances of the key parameters of 3d block transition metal single and dual atoms catalysts: from their synthesis to their practical applications Materials Today Sustainability, 2023, 21 100288.
    9) (a) Malapit, C. A.; Prater, M. B.; Cabrera-Pardo, J. R.; Li, M.; Pham, T. D.; McFadden, T. P.; Blank, S.; Minteer, S. D.; Advances on the Merger of Electrochemistry and Transition MetalCatalysis for Organic Synthesis, Chem.Rev. 2022, 122, 3180−3218. (b) Kim, U. B.; Jung, D. J.; Jeon, H. J.; Rathwell, K.; Lee, S-g.; Synergistic Dual Transition Metal Catalysis Chem. Rev. 2020, 120, 13382−13433.
    10) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M.; Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids: 1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate J. Am. Chem. Soc. 2001, 123, 9918-9919.
    11) Lautens, M.; Yoshida, M.; Regioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkynes with a Pyridine-Substituted Water-Soluble Ligand, Org. Lett., 2002, 4, 1, 123–125
    12) Panteleev, J.; Zhang, L.; Lautens, M.; Domino Rhodium-Catalyzed Alkyne Arylation/Palladium-Catalyzed N Arylation: A Mechanistic Investigation, Angew. Chem. Int. Ed. 2011, 50, 9089 –9092.
    13) Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M.; Addition of Arylboronic Acids to Arylpropargyl Alcohols en Route to Indenes and Quinolines Org. Lett., 2011, 13, 19.
    14) Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y.; Nickel-catalysed hydroarylation of alkynes using arylboron compounds: selective synthesis of multisubstituted arylalkenes and aryldienes, Chem. Commun., 2001, 2688–2689.
    15) Babu, M. H.; Kumar, G. R.; Kantc, R.; Reddy, M, S.; Ni-Catalyzed regio- and stereoselective addition of arylboronic acids to terminal alkynes with a directing group tether, Chem. Commun., 2017, 53, 3894—3897.
    16) Hanna, L. E.; Konev, M. O.; Jarvo, E. R.; Nickel-Catalyzed Directed Hydroarylation of Alkynes with Boronic Acids. Eur. J. Org. Chem. 2019, 184–187.
    17) (a) Liu, X.; Astruc, D.; Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv. Synth. Catal. 2018, 360, 3426 –3459. (b) Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, Q.; Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org. Chem. Front., 2021, 8, 384–414.
    18) Fernandes, R. A.; Jha, A. K.; Kumar, P.; Recent advances in Wacker oxidation: from conventional to modern variants and applications. Catal. Sci. Technol., 2020, 10, 7448–7470.
    19) Oh, C. H.; Jung, H. H.; Kim, K. S.; Kim, N. The Palladium Catalyzed Addition of Organoboronic Acids to Alkynes. Angew. Chem., Int. Ed. 2003, 42, 805−808.
    20) Kim, N.; Kim, K. S.; Gupta, A. K.; Oh, C. H.; On the regioselectivity of Pd-catalyzed additions of organoboronic acids to unsymmetrical alkynes. Chem. Commun., 2004, 618–619
    21) Liu, Z.; Derosa, J.; Engle, K. M. Palladium(II)-Catalyzed Regioselective syn-Hydroarylation of Disubstituted Alkynes Using a Removable Directing Group. J. Am. Chem. Soc. 2016, 138, 13076−13081.
    22) Corpas, J.; Quirós, M. T.; Mauleón, P.; Arrayás, R. G.; Carretero, J. C. Metal- and Photocatalysis To Gain Regiocontrol and Stereodivergence in Hydroarylations of Unsymmetrical Dialkyl Alkynes. ACS Catal. 2019, 9, 10567−10574.
    23) Fujino, D.; Yorimitsu, H.; Oshima, K.; Synthesis of Alkylidenecyclopropanes by Palladium-Catalyzed Reaction of Propargyl-Substituted Malonate Esters with Aryl Halides by Anti-carbopalladation Pathway. J. Am. Chem. Soc. 2011, 133, 9682–9685.
    24) Fujino, D.; Yorimitsu, H.; Osuka, A.; Synthesis of 1,2-Disubstituted Cyclopentenes by Palladium-Catalyzed Reaction of Homopropargyl-Substituted Dicarbonyl Compounds with Organic Halides via 5-Endo-Dig Cyclization. Org. Lett., 2012, 14, 11.
    25) (a) Zheng, Q.-Z.; Cheng, K.; Zhang, X.-M.; Liu, K.; Jiao, Q.-C.; Zhu, H.-L. ; ‘Synthesis of some N-alkyl substituted urea derivatives as antibacterial and antifungal agents’, Eur. J. Med. Chem. 2010, 45, 3207-3212. (b) Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380−384. (c) von Geldern, T. W.; Kester, J. A.; Bal, R.; Wu-Wong, J. R.; Chiou, W.; Dixon, D. B.; Opgenorth, T. J. Azole Endothelin Antagonists. 2. Structure−Activity Studies. J. Med. Chem. 1996, 39, 968−981. (d) Castro, J. L.; Ball, R. G.; Broughton, H. B.; Russell, M. G. N.; Rathbone, D.; Watt, A. P.; Baker, R.; Chapman, K. L.; Fletcher, A. E.; Patel, S.; Smith, A. J.; Marshall, G. R.; Ryecroft, W.; Matassa, V. G. Controlled Modification of Acidity in Cholecystokinin B Receptor Antagonists:  N-(1,4-Benzodiazepin-3-yl)-N ‘-[3-(tetrazol-5-ylamino)phenyl]ureas. J. Med. Chem. 1996, 39, 842−849.
    26) (a) Shahnaz, P.; Sana, M.; Muhammad, A. K.; Ahsana, D.; Khalid, M. K.; Wolfgang, V.; Substituted urea derivatives: a potent class of antidepressant agents. Med Chem, 2012, 8, 330-336. (b) Sikka, P.; Sahu, J. K.; Mishra, A. K.; Hashim, SR.; Role of Aryl Urea Containing Compounds in Medicinal Chemistry. Med chem 2015, 5, 479-483.
    27) (a) Babad, H.; Zeiler, A. G.; Chemistry of Phosgene. Chem. Rev. 1973, 73, 75-91. (b) Ren, Y.; Rousseaux, S. A. L.; Metal-Free Synthesis of Unsymmetrical Ureas and Carbamates from CO2 and Amines via Isocyanate Intermediates. J. Org. Chem. 2018, 83, 913-920. (c) Majer, P. Randad, R. S. A Safe and Efficient Method for Preparation of N,N'-Unsymmetrically Disubstituted Ureas Utilizing Triphosgene. J. Org. Chem. 1994, 59, 1937-1938.
    28) Troisi, L.; Granito, C.; Perrone, S.; Rosato, F.; Synthesis of benzo-fused five- and six-membered heterocycles by palladium-catalyzed cyclocarbonylation. Tetrahedron Letters 2011, 52 4330–4332.
    29) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J.; Parallel Synthesis of Ureas and Carbamates from Amines and CO2 under Mild Conditions. Org. Lett. 2010, 12, 6, 1340–1343.
    30) Leogane, O.; Lebel, H.; One-Pot Curtius Rearrangement Processes from Carboxylic Acids. Synthesis 2009, 11, 1935-1940.
    31) Spyropoulos, C.; Kokotos, C. G; One-Pot Synthesis of Ureas from Boc-Protected Amines. J. Org. Chem. 2014, 79, 4477-4483.
    32) Fan, A.; Peng, J.; Zhou, D.; Li, X.; Chen, C.; Palladium-catalyzed decarbonylative C–N coupling to convert arylcarbamoyl chlorides to urea derivatives. Synth. Commun. 2020, 50, 20, 3113-3124.
    33) Chen, B.; Peng, J-B.; Ying, J.; Qi, X.; Wu, X-F.; A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Adv. Synth. Catal. 2018, 360, 2820-2824.
    34) Zhao, J.; Li.; Z.; Yan, S.; Xu, S.; Wang, M-A.; Fu, B. Zhang, Z.; Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines. Org. Lett. 2016, 18, 8, 1736-1739.
    35) (a) -Biegasiewicz, L. K. G.; Kariofillis, S. K.; Weix, D. J.; Multimetallic-Catalyzed C–C Bond-Forming Reactions: From Serendipity to Strategy. J. Am. Chem. Soc. 2023, 145, 12, 6596–6614. (b) Guo, L.; Rueping, M.; Transition-Metal-Catalyzed DecarbonylativeCoupling Reactions:Concepts, Classifications, and Applications. Chem. Eur. J. 2018, 24, 7794 –7809.
    36) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I.; Room-Temperature Palladium-Catalyzed C-H Activation:ortho-Carbonylation of Aniline Derivatives. Angew. Chem. Int. Ed. 2009, 48, 1830 –1833.
    37) Yang, J.; Shi, W.; Chen, W.; Gao, H.; Zhou, Z.; Yi, W.; Rh(III)-Catalyzed Chemoselective C–H Alkenylation and [5 + 1] Annulation with Gem-Difluoromethylene Enabled by the Distinctive Fluorine Effect. J. Org. Chem. 2021, 86, 9711−9722.
    38) Gazizov, A. S.; Smolobochkin, A. V.; Kuznetsova, E. A.; Abdullaeva, D. S.; Burilov, A. R.; Pudovik, M. A.; Voloshina, A. D.; Syakaev, V. V.; Lyubina, A. P.; Amerhanova, S. K.; Voronina, J. K.; The Highly Regioselective Synthesis of Novel Imidazolidin-2-Ones via the Intramolecular Cyclization/Electrophilic Substitution of Urea Derivatives and the Evaluation of Their Anticancer Activity. Molecules, 2021, 26, 4432.
    39) (a) Xi, F.; Kamal, F.; Schenerman, M. A; A novel and convenient transformation of nitriles to aldehydes. Tetrahedron Letters, 2002, 43, 1395–1396. (b) Rao, B. S.; Srivani, A.; Lakshmi, D. D.; Lingaiah, N.; Selective Hydration of Nitriles to Amides Over Titania Supported Palladium Exchanged Vanadium Incorporated Molybdophosphoric Acid Catalysts. Catal Lett, 2016, 146, 2025–2031. (c) Ding, Y.; Luo, S.; Weng, C.; An, J.; Reductive Deuteration of Nitriles Using D2O as a Deuterium Source. J. Org. Chem. 2019, 84, 23, 15098–15105.
    40) Li, H.; Chen, J.; Dong, J.; Kong, W.; Ni-Catalyzed Reductive Arylcyanation of Alkenes. Org. Lett. 2021, 23, 6466−6470.

    B-VI. REFERENCES:
    (1) For selected reviews, see: (a) Chinchilla, R.; Nájera, C.; Chemicals from Alkynes with Palladium Catalysts Chem. Rev. 2014, 114, 1783–1826; (b) Trost, B. M.; Li, C.-J.; Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley-VCH, Weinheim, 2015. (c) Tabassum, S.; Zahoor, A. F.; · Ahmad, S.; · Noreen, R.; · Khan, S. G.; · Ahmad, H. Cross-coupling reactions towards the synthesis of natural products Molecular Diversity 2022, 26, 647.
    (2) (a) Tsukamoto, H.; Ueno, T.; Kondo, Y. J.; Palladium (0)-Catalyzed Alkylative Cyclization of Alkynals and Alkynones:  Remarkable trans-Addition of Organoboronic Reagents J. Am. Chem. Soc. 2006,128, 1406. (b) Shu, W.; Jia, G.; Ma, S.; Palladium-Catalyzed Three-Component Cascade Cyclization Reaction of Bisallenes with Propargylic Carbonates and Organoboronic Acids: Efficient Construction of cis-Fused Bicyclo[4.3.0]nonenes Angew. Chem., Int. Ed. 2009, 48, 2788. (c) Chen, M.; Chen. Y.; Liu, Y. Yuanhong, Palladium-catalyzed highly efficient synthesis of tetracenes and pentacenes Chem. Commun., 2012, 48, 12189.
    (3) (a) Chang, M-Y.; Cheng, Y-C.; Lu, Y-J.; Bi(OTf)3-Mediated cycloisomerization of γ-Alkynyl aryl ketones: Application to the Synthesis of Substituted Furans Org. Lett. 2015, 17, 1264; (b) Shen, X.; Huang, C.; Yuan, X-A.; Yu, S.; Diastereoselective and stereo divergent synthesis of 2-cinnamylpyrrolines Enabled by photo redox-catalyzed iminoalkenylation of Alkenes Angew. Chem. Int. Ed. 2021, 60, 9672.
    (4) (a) Zhao, L.; Huang, Y.; Wang, Z.; Zhu, E.; Mao, T.; Jia, J.; Gu, J.; Li, X-F.; He, C-Y.; Organophosphine-Catalyzed Difluoroalkylation of Alkenes Org. Lett. 2019, 21, 6705; (b) Ning, X.; Chen, Y.; Hu, F.; Xia, Y.; Palladium-Catalyzed Carbene Coupling Reactions of Cyclobutanone N-Sulfonylhydrazones Org. Lett. 2021, 23, 8348; (c) Moriyama, K.; Kuramochi, M.; Tsuzuki, S.; Fujii, K.; Morita, T.; Nitroxyl Catalysts for Six-Membered Ring Bromolactonization and Intermolecular Bromoesterification of Alkenes with Carboxylic Acids Org. Lett. 2021, 23, 268. (d) Zhang, Q.; Chan. Y-Y.; Zhang, M.; Yeung, Y-Y.; Ke, Z.; Hypervalent Chalcogenonium···π Bonding Catalysis Angew. Chem.Int. Ed. 2022, 61, e2022080;
    (5) (a) Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y.; Nickel-catalysed hydroarylation of alkynes using arylboron compounds: selective synthesis of multi substituted arylalkenes and aryldienes Chem. Commun., 2001, 2688; (b) Kim, N.; Kim, K. S.; Gupta, A. K.; Oh, C. H.; On the regioselectivity of Pd-catalyzed additions of organoboronic acids to unsymmetrical alkynes Chem. Commun., 2004, 618; (c) Yang; Y.; Wang, L.; Zhang, J.; Jin, Y.; Zhu, G.; An unprecedented Pd-catalyzed trans-addition of boronic acids to ynamides Chem. Commun., 2014, 50, 2347. (d) Ojha, D. P.; Prabhu, K. R.; Pd-Catalyzed Hydroborylation of Alkynes: A Ligand Controlled Regioselectivity Switch for the Synthesis of α- or β-Vinylboronates Org. Lett. 2016, 18, 432;
    (6) (a) Rej, S.; Das, A.; Panda, T. K.; Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes Adv. Synth.Catal. 2021, 363, 4818; (b) Corpas, J.; Mauleón, P.; Arrayás, R-G.; Carretero, J-C.; Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications ACS Catal. 2021, 11, 7513
    (7) (a) Oh, C. H.; Jung, H. H.; Kim, K. S.; Kim, N.; The Palladium-Catalyzed Addition of Organoboronic Acids to Alkynes Angew. Chem. Int. Ed. 2003, 42, 805; (b) Bai, Y.; Yin, J.; Kong, W.; Mao, M.; Zhu, G.; Pd-catalyzed addition of boronic acids to ynol ethers: a highly regio- and stereoselective synthesis of trisubstituted vinyl ethers Chem. Commun., 2013, 49, 7650.
    (8) (a) Zhao, Y.; Jiang, X.; Yeung, Y.-Y. Catalytic, Enantioselective, and Highly ChemoselectiveBromocyclization of Olefinic Dicarbonyl Compounds Angew. Chem. Int. Ed. 2013, 52, 8597. (b) Guo, L.-N.; Wang, S.; Duan, X.-H.; Zhou, S.-L. Iron-catalyzed tandem cyclization of olefinic dicarbonyl compounds with benzylic Csp3–H bonds for the synthesis of dihydrofurans Chem. Commun. 2015, 51, 4803. (c) Lv, L.; Lu, S. Guo, Q.; Shen, B.; Li, Z. Iron-Catalyzed Acylation-Oxygenation of Terminal Alkenes for the Synthesis of Dihydrofurans Bearing a Quaternary Carbon J. Org. Chem. 2015, 80, 698. (d) Yang, N-Y.; Li, Z-L.; Ye, L.; Tan, B.; Liu, X.-Y.; Organic base-catalyzed solvent-tuned chemo selective carbotrifluoromethylation and oxytrifluoromethylation of unactivated alkenes Chem. Commun. 2016, 52, 9052. (e) Zhang, J.-Y. Duan, X.-H.; Yang, J.-C.; Guo, L.-N. Redox-Neutral Cyanoalkylation/Cyclization of Olefinic 1,3‑Dicarbonyls with Cycloketone Oxime Esters: Access to yanoalkylated Dihydrofurans J. Org. Chem. 2018, 83, 4239. (f) Wei, W.-T.; Luo, M.-J.; Teng, F.; Song, R.-J.; Li J.-H. Silver-catalyzed oxidative 1,2-alkyl etherification of unactivated alkenes with -bromoalkyl carbonyls: facile access to highly substituted 2,3-dihydrofurans Chem. Commun. 2019, 55, 11111. (g) Guan, Z.; Wang, Y.; Wang, H.; Huang, Y.; Wang, S.; Tang, H.; Zhang, H.; Lei, A. Electrochemical oxidative cyclization of olefinic carbonyls with diselenides Green Chem. 2019, 21, 4976.
    (9) Mutra, M. R.; Li, J.; Chen, Y.-T.; Wang, J.-J. Chem.Eur. J. 2022, 28, e2022007.
    (10) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Parisi, L. M.; Highly substituted furans from 2-propynyl-1,3-dicarbonyls and organic halides or triflates via the oxypalladation-reductive elimination domino reaction, Tetrahedron 2003, 59, 4661; (b) Kołodziejczyk, A.; Chaładaj, W.; Efficient and Functional-Group-Tolerant Synthesis of Substituted Furans through the Pd-Catalyzed 5-exo-dig Cyclization/Coupling of γ-Acetylenic -Keto Esters with (Hetero)Aryl Bromides Eur. J. Org. Chem. 2018, 2554; (c) Bisek, B.; Chaładaj, W.; Controllable Access to Furans and Dihydrofurans through Cyclization/Coupling of Internal Acetylenic β-Ketoesters with Aryl Bromides Adv. Synth. Catal. 2022, 364, 1.
    (11) (a) Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C-W.; Yao, C.-F.; Palladium-Catalyzed Tandem C−H Functionalization/Cyclization Strategy for the Synthesis of 5‑Hydroxybenzofuran Derivatives Org. Lett. 2017, 19, 54; (b) Sarathkumar, S.; Kavala, V.; Yao, C-F.; A Water-Soluble Rhenium(I) Catalyst for the Regio- and Stereoselective C(sp2−H Alkenylation of N‑Pyridyl‑/N‑pyrimidylindole and the N−H Alkenylation of N‑pyrimidylaniline Derivatives with Ynamides Org. Lett. 2021, 23, 1960.; (c) Kavala, V.; Lin, L-C.; Patil, P. B., Fang, C-C.; Hong, Z. Y.; Liou, Y-R.; Chen, Y-N.; Weng, Y-Z.; Sarathkumar, S.; Rao, N. S.; Suresh, S.; Jiang, Z.; Yao, C-F.; Copper-catalyzed oxidative cascade inter-molecular double cyclization of 2-iodobenzamide derivatives and propargyl dicarbonyl compounds for accessing 3-hydroxy-3-furylisoindolinone derivatives Adv. Synth.Catal. 2022, 364, 2801.
    (12) Pace, D. P. Robidas. R., Tran, U. P. N.; Legault, C. Y.; Nguyen, T. V. Iodine-Catalyzed Synthesis of Substituted Furans and Pyrans: Reaction Scope and Mechanistic Insights J. Org. Chem. 2021, 86, 8154.
    (13) a) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G. Q. Selenium-Based Solid-Phase Synthesis of Benzopyrans I: Applications to Combinatorial Synthesis of Natural Product Angew. Chem., Int. Ed. 2000, 39, 734. b) Veitch, N. C.; Grayer, R. J. Flavonoids and their glycosides, including anthocyanins Nat. Prod. Rep. 2011, 28, 1626, e) Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G. K.; Jain, S. K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry RSC Adv., 2017, 7, 36977.
    (14) Shabalin, D. A. Recent advances and future challenges in the synthesis of 2,4,6-triaryl pyridines Org. Biomol. Chem., 2021, 19, 8184.
    (15) (a) Xu, X.; Chen, J.; Gao, W.; Wu, H.; Ding, J.; Su, W.; Palladium-catalyzed hydroarylation of alkynes with arylboronic acids Tetrahedron 2010, 66, 2433. (b) O’Duill, M. L.; Engle, K. M.; Protodepalladation as a Strategic Elementary Step in Catalysis Synthesis 2018; 50, 4699; (c) Rao, S.; Joy, M. N.; Prabhu, K. R.; Employing Water as the Hydride Source in Synthesis: A Case Study of Diboron Mediated Alkyne Hydroarylation J. Org. Chem. 2018, 83, 13707;
    (16) (a) Corpas, J.; Mauleon, P.; Arrayas, R. G.; ́ Carretero, J. C.; anti-Hydroarylation of Activated Internal Alkynes: Merging Pd and Energy Transfer Catalysis Org. Lett. 2020, 22, 6473; (b) Ma, D.; Hu, S.; Chen, S.; Pan, J.; Tu, S.; Yin, Y.; Gao, Y.; Zhao, Y.; Palladium-Catalyzed Addition/Cyclization of (2-Hydroxyaryl)boronic Acids with Alkynylphosphonates: Access to Phosphacoumarins Org. Lett. 2020, 22, 8156.
    (17) Miyaura, N.; Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes J. Organomet. Chem., 2002 653, 54. (b) Amatore, C., Duc. G., L. Jutand, A., Mechanism of Palladium-Catalyzed Suzuki–Miyaura Reactions: Multiple and Antagonistic Roles of Anionic “Bases” and Their Countercations Chem. Eur. J. 2011, 17, 2492 .
    (18) (a) Martinez-Haya, R.; Marzo. L.; Ko¨nig, B.; Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of b-diketones or b-ketoesters with styrenes Chem. Commun., 2018, 54, 11602. (b) Sun, D-W.; Jiang, M.; Liu, J-T.; Novel Bifunctionalization of Activated Methylene: Base-Promoted Trifluoromethylthiolation of b-Diketones with Trifluoromethanesulfinyl Chloride Chem.Eur.J. 2019, 25, 10797–10802. (c) Zhang, H.; Feng, D.; Sheng, H.; Ma, X.; Wan, J.; Tang, Q.; Asymmetric transfer hydrogenation of unsymmetrical benzils RSC Adv., 2014, 4, 6417. (d) Ferlin, M. J.; Chiarelotto, G.; Gasparotto, V.; Via, L. D.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I.; Synthesis and in Vitro and in Vivo Antitumor Activity of 2-Phenylpyrroloquinolin-4-ones J. Med. Chem. 2005, 48, 9, 3417–3427. (e) Varun, B. V.; Gadde, K.; Prabhu, K. R.; Sulfenylation ofβ‑Diketones Using C−H Functionalization Strategy Org. Lett. 2015, 17, 12, 2944–2947. (f) Li, Z.; Li, T.; Li, J.; He, L.; Jia, X.; Yang, J.; 2-Hydroxylation of 1,3-diketones with atmospheric oxygen Synlett 2015, 26, 2863–2865. (g) Ferlin, M. J.; Chiarelotto, G.; Gasparotto, V.; Via, L. D.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I.; Synthesis and in Vitro and in Vivo Antitumor Activity of 2-Phenylpyrroloquinolin-4-ones J. Med. Chem. 2005, 48, 9, 3417–3427.
    (19) (a) Chen, Y-F.; Wang, H-F.; Wang, Y.; Luo, Y-C.; Zhu, H-L.; Xua, P-F.; Base- and Copper-Catalyzed Intramolecular Cyclization for the Direct Synthesis of Dihydrofurans Adv. Synth. Catal. 2010, 352, 1163 – 1168. (b) 3- Barluenga, J.; Jardon, J.; Gotor, V.; C-Alkylation and N-acylation of 4-amino-1-azabutadiene derivatives. A convenient route to monoalkylated 1, 3-diketones J. Org. Chem. 1985, 50, 6, 802–804. (c) Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, Somsak.; Rate Enhancement in CAN-Promoted Pd(PPh3)2Cl2‑CatalyzedOxidative Cyclization: Synthesis of 2‑Ketofuran-4-carboxylate Esters Org.Lett. 2019, 21, 2514−2517. (d) Golonka, A. N.; Schindler, C. S.; Iron(III) chloride-catalyzed synthesis of 3-carboxy-2,5-disubstituted furans from g-alkynyl aryl- and alkylketones Tetrahedron 2017, 73 4109-4114.
    (20) (a) Liu, B.; Song, Q.; Liu, Z.; Wanga, Z.; Silver-Catalyzed Oxyphosphorylation of Unactivated Alkynes Adv. Synth.Catal.2021,363, 3214–32. (b) Chaisan, N.; Ruengsangtongkul, S.; Tummatorn, J.; Ruchirawat, S.; Chainok, K.; Thongsornkleeb, C.; Dibrominative Spirocyclization of 2‑Butynolyl Anilides: Synthesis of gem-Dibromospirocyclic Benzo[d][1,3]oxazines and Their Application in the Synthesis of 4H‑Furo[3,2‑b]indoles J. Org. Chem. 2021, 86, 4671−4698
    (21) (a) Lv, H.; Xiao, L-J.; Zhao, D.; Zhou, Q-L.; Nickel(0)-catalyzed linear-selective hydroarylation of unactivated alkenes and styrenes with aryl boronic acids Chem. Sci., 2018, 9, 6839. (b) Zhong, J.; Long, Y.; Yan, X.; He, H.; Ye, R.; Xiang, H.; Xiangge, Z.; Rhodium-Catalyzed PyridineN‑Oxide Assisted Suzuki−MiyauraCoupling Reaction via C(O)−C Bond Activation Org.Lett. 2019, 21, 9790−9794.
    (22) (a) Oh, C. H.; Jung, H. H.; Kim, K. S.; Kim, N.; The Palladium-Catalyzed Addition of Organoboronic Acids to Alkynes Angew. Chem. Int. Ed. 2003, 42, No. 7; (b) Ma, D.; Hu, S.; Chen, S.; Pan, J.; Tu, S.; Yin, Y.; Gao, Y.; Zhao, Y.; Palladium-Catalyzed Addition/Cyclization of (2- Hydroxyaryl)boronic Acids with Alkynylphosphonates: Access to Phosphacoumarins Org. Lett. 2020, 22, 8156.
    (23) (a) Zhang, J-Y.; Duan, X-H.; Yang, J-C.; Guo, L-N.; Redox-Neutral Cyanoalkylation/Cyclization of Olefinic 1,3-Dicarbonyls with Cycloketone Oxime Esters: Access to Cyanoalkylated Dihydrofurans J. Org. Chem. 2018, 83, 7, 4239–4249. (b) Yang, N-Y.; Li, Z-L.; Ye, L.;Tan, B.; Liu. X-Y.; Organic base-catalysed solvent-tuned chemoselective carbotrifluoromethylation and oxytrifluoromethylation of unactivated alkenes Chem. Commun., 2016, 52, 9052-9055. (c) Zhao, Y.; Jiang, X.; Yeung, Y-Y.; Catalytic, Enantioselective, and Highly Chemoselective Bromocyclization of Olefinic Dicarbonyl Compounds Angew. Chem. Int. Ed. 2013,52, 8597–8601. (d) Faulkner, A.; Scott, J, S.; Bower, J. F.; An Umpolung Approach to Alkene Carboamination: Palladium Catalyzed 1,2-Amino-Acylation, -Carboxylation, -Arylation, -Vinylation, and -Alkynylation J.Am.Chem.Soc.2015, 137, 7224−7230. (e) Shen, Xu.; Huang, C.; Yuan, X-A.; Yu. S.; Diastereoselective and Stereodivergent Synthesis of 2-Cinnamylpyrrolines Enabled by Photoredox-Catalyzed Iminoalkenylation of Alkenes Angew.Chem.Int.Ed. 2021, 60, 9672–9679. (f) Suresh, R.; Simlandy, A. K.; Mukherjee, S.; A Catalytic Enantioselective Iodocyclization Route to Dihydrooxazines Org.Lett. 2018, 20, 1300−1303. (g) Subramanian, K.; Yedage, S. L.; Bhanage, B. M.; An Electrochemical Method for Carboxylic Ester Synthesis from N-Alkoxyamides J. Org. Chem. 2017, 82, 19, 10025–10032. (h) Munnuri, S.; Falck, J. R.; Directed, Remote Dirhodium C(sp3)-H Functionalization, Desaturative Annulation, and Desaturation J. Am. Chem.Soc. 2022,144, 17989−17998. (i) Zheng, C.; Stahl, S. S.; Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to α-alkyl vinylarenes Chem. Commun., 2015, 51, 12771—12774.

    C-VI. References:
    (1) S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet, M. Lynch, ‘Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling’, Mol. Cancer Ther. 2008, 7, 3129-3140.
    (2) J. Kehr, T. Yoshitake, F. Ichinose, S. Yoshitake, B. Kiss, I. Gyertyan, N. Adham, ‘Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity’, Psychopharmacology. 2018, 235, 1593-1607.
    (3) A. Guan, C. Liu, X. Yang, M. Dekeyser, ‘Application of the Intermediate Derivatization Approach in Agrochemical Discovery’, Chem. Rev. 2014, 114, 7079-7107.
    (4) T. Kishida, N. Fujita, K. Sada, S. Shinkai, ‘Porphyrin Gels Reinforced by Sol−Gel Reaction via the Organogel Phase’, Langmuir, 2005, 21, 9432-9439.
    (5) Q.-Z. Zheng, K. Cheng, X.-M. Zhang, K. Liu, Q.-C. Jiao, H.-L. Zhu, ‘Synthesis of some N-alkyl substituted urea derivatives as antibacterial and antifungal agents’, Eur. J. Med. Chem. 2010, 45, 3207-3212.
    (6) B. Chen, J-B. Peng, J. Ying, X. Qi, X-F. Wu, ‘A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas’, Adv. Synth. Catal. 2018, 360, 2820-2824.
    (7) A. Cabrera, L. Cox, P. Velarde, W. C. Koskinen, J. Cornejo, ‘Fate of Diuron and Terbuthylazine in Soils Amended with Two-Phase Olive Oil Mill Waste’, J. Agric. Food Chem. 2007, 55, 4828-4834.
    (8) S. D. Askew, B. M. S. McNulty, ‘Methiozolin and Cumyluron for Preemergence Annual Bluegrass (Poa annua) Control on Creeping Bentgrass (Agrostis stolonifera) Putting Greens’, Weed Technol. 2014, 28, 535-542.
    (9) Y. Kununobu, H. Ida, M. Nishi, M. Kanai, ‘A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate’, Nat. Chem. 2015, 17, 712-717.
    (10) R. Dalpozzo, ‘Magnetic nanoparticle supports for asymmetric catalysts’, Green Chem. 2015, 17, 3671-3686.
    (11) J. Saadi, H. Wennemers, ‘Enantioselective aldol reactions with masked fluoroacetates’, Nat. Chem., 2016, 8, 276-280.
    (12) L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati, J. W. Steed, Nat. Chem. 2012, 11, 42-47.
    (13) A. G. Doyle, E. N. ‘Jacobsen, Small-Molecule H-Bond Donors in Asymmetric Catalysis’, Chem. Rev. 2007, 107, 5713-5743.
    (14) T. J. Fisher, A. E. Mattson, ‘Synthesis of α-Peroxyesters via Organocatalyzed O–H Insertion of Hydroperoxides and Aryl Diazoesters’, Org. Lett. 2014, 16, 5316-5319.
    (15) N. Harada, H. Kimura, M. Ono, H. Saji, ‘preparation of Asymmetric Urea Derivatives that Target ProstateSpecific Membrane Antigen for SPECT Imaging’, J. Med. Chem. 2013, 56, 7890-7901.
    (16) J. B. Santella, D. S. Gardner, J. V. Duncia, H. Wu, M. Dhar, C. Cavallaro, A. J. Tebben, P. H. Carter, J. C. Barrish, M. Yarde, S. W. Briceno, M. E. Cvijic, R. R. Grafstrom, R. Liu, S. R. Patel, A. J. Watson, G. Yang, A. V. Rose, R. D. Vickery, J. Caceres-Cortes, C. Caporuscio, D. M. Camac, J. A. Khan, Y. An, W. R. Foster, P. Davies, J. Hynes, Jr. ‘Discovery of the CCR1 Antagonist, BMS-817399, for the Treatment of Rheumatoid Arthritis’, J. Med. Chem. 2014, 57, 7550-7564.
    (17) A. Kumar, D. Paliwal, D. Saini, A. Thakur, S. Aggarwall, D. Kaushik, ‘A comprehensive review on synthetic approach for antimalarial agents’, Eur. J. Med. Chem., 2014, 85, 147-178.
    (18) J. N. Domínguez, C. León, J. Rodrigues, N. G. de Domínguez, J. Gut, P. J. Rosenthal, ‘Synthesis and Evaluation of New Antimalarial Phenylurenyl Chalcone Derivatives’, J. Med. Chem., 2005, 48, 3654-3658.
    (19) M. D. McBriar, H. Guzik, R. Xu, J. Paruchova, S. Li, A. Palani, J. W. Clader, W. J. Greenlee, B. E. Hawes, T. J. Kowalski, K. O′Neill, B. Spar, B. Weig, ‘Discovery of Bicycloalkyl Urea Melanin Concentrating Hormone Receptor Antagonists:  Orally Efficacious Antiobesity Therapeutics’, J. Med. Chem., 2005, 48, 2274-2277.
    (20) C. Fotsch, J. D. Sonnenberg, N. Chen, C. Hale, W. Karbon, M. H. Norman, ‘Synthesis and Structure−Activity Relationships of Trisubstituted Phenyl Urea Derivatives as Neuropeptide Y5 Receptor Antagonists’, J. Med. Chem. 2001, 44, 2344-2356.
    (21) P. Y. Lam, P. K. Jadhav, C. J. Eyermann, C. N. Hodge, Y. Ru, L. T. Bacheler, J. L. Meek, M. J. Otto, M. M. Rayner, Y. N. Wong, C.-H. Chang, P. C. Weber, D. A. Jackson, T. R. Sharpe, S. Erickson-Viitanen, ‘Rational Design of Potent, Bioavailable, Nonpeptide Cyclic Ureas as HIV Protease Inhibitors’, Science 1994, 263, 380-384.
    (22) A. A. Bastian, A. Marcozzi and A. Herrmann, ‘Selective transformations of complex molecules are enabled by aptameric protective groups’, Nat. Chem. 2012, 11, 789-793.
    (23) H.-Q. Li, P.-C. Lv, T. Yan, and H.-L. Zhu, ‘Urea derivatives as anticancer agents’, Anti-Cancer Agents Med. Chem., 2009, 9, 471-480.
    (24) H. Gurulingappa, M. L. Amador, M. Zhao, M. A. Rudek, M. Hidalgo, and S. R. Khan, ‘Synthesis and antitumor evaluation of benzoylphenylurea analogs’, Bioorg. Med. Chem. Lett. 2004, 14, 2213-2216.
    (25) D. S. Babu, D. Srinivasulu, V. S. Kotakadi, ‘Synthesis of novel N-aryl-4-[6-(2-fluoropyridin-3-yl)quinazolin-2-yl]- piperazine-1-carboxamide or -carbothioamide derivatives and their antimicrobial activity’, Chem. Heterocycl. Compd. 2015, 51, 60-66.
    (26) H. Babad, A. G. Zeiler, ‘The Chemistry of Phosgene’, Chem. Rev. 1973, 73, 75-91.
    (27) P. Majer, R. S. Randad, ‘A Safe and Efficient Method for Preparation of N,N'-Unsymmetrically Disubstituted Ureas Utilizing Triphosgene’, J. Org. Chem. 1994, 59, 1937-1938.
    (28) Y. Ren, S. A. L. Rousseaux, ‘Metal-Free Synthesis of Unsymmetrical Ureas and Carbamates from CO2 and Amines via Isocyanate Intermediates’, J. Org. Chem. 2018, 83, 913-920.
    (29) L. Mistry, K. Mapesa, T. W. Bousfield, J. E. Camp. ‘Synthesis of ureas in the bio-alternative solvent Cyrene’, Green Chem., 2017, 19, 2123-2128.
    (30) M.; Melea, V. Carafa, E, Quaranta, ‘A simple direct phosgeneless route to N-heteroaryl unsymmetrical ureas’, Green Chem., 2012, 14, 217-225.
    (31) A. G. M. Barrett, T. C. Boorman, M. R. Crimmin, M. S. Hill, G. Kociok-Kohn, P. A. Procopiou ‘Heavier group 2 element-catalysed hydroamination of isocyanates’, Chem. Commun. 2008, 5206-5208.
    (32) S. Ozaki, ‘Recent Advances in Isocyanate Chemistry’, Chem. Rev. 1972, 72, 457-496.
    (33) X. Huang, S. Xu, Q. Tan, M. Gao, M. Li, B. Xu, ‘A copper-mediated tandem reaction through isocyanide insertion into N–H bonds: efficient access to unsymmetrical tetrasubstituted ureas’, Chem. Commun. 2014, 50, 1465-1468.
    (34) A. Angyal, A. Demjen, J. Wolfling, L. G. Puskas, I. Kanizsai, ‘A green, isocyanide-based three-component reaction approach for the synthesis of multisubstituted ureas and thioureas’, Tetrahedron Lett. 2018, 59, 54-57.
    (35) K. Nakashima, T. Takeshita K. Morimoto, ‘Diagnosis and prevention of diseases induced by isocyanate’, Environ. Health Prev. Med. 2002, 7, 40-46.
    (36) C. S. Senthilkumar, N. K. Sah, N. Ganesh, ‘Methyl isocyanate and carcinogenesis: bridgeable gaps in scientific knowledge’, Asian Pac. J. Cancer Prev. 2012, 13, 2429-2435.
    (37) C. Spyropoulos, G. C. Kokotos, ‘One-Pot Synthesis of Ureas from Boc-Protected Amines’, J. Org. Chem. 2014, 79, 4477-4483.
    (38) J. Zhao, Z. Li, S. Yan, S. Xu, M-A. Wang, B. Fu, Z. Zhang, ‘Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines’, Org. Lett. 2016, 18, 1736-1739.
    (39) B. Chen, J-B. Peng, J. Ying, X. Qi, X-F. Wua, ‘A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas’, Adv. Synth. Catal. 2018, 360, 2820-2824.
    (40) V. Kavala, Z. Yang, A. Konala, C.-Y. Huang, C.-W. Kuo, C.-F. Yao, ‘Synthesis of Benzopyridoindolone Derivatives via a One-Pot Copper Catalyzed Tandem Reaction of 2-Iodobenzamide Derivatives and 2-Iodobenzylcyanides’, J. Org. Chem. 2017, 82, 7280-7286.
    (41) C.-Y. Huang, V. Kavala, C.-W. Kuo, A. Konala, T.-H. Yang, C.-F. Yao, ‘Synthesis of Biologically Active Indenoisoquinoline Derivatives via a One-Pot Copper(II)-Catalyzed Tandem Reaction’, J. Org. Chem. 2017, 82, 1961-1968.
    (42) V. Kavala, C.-C. Wang, Y.-H. Wang, C.-W. Kuo, D. Janreddy, W.-C. Huang, T.-S. Kuo, C. H. He, M.-L. Chen, C.-F. Yao, ‘Synthesis of Fused Isoquinolinone and Iminoisoindolinone Derivatives via a Copper-Catalyzed Regioselective Switching Process’, Adv. Synth. Catal. 2014, 356, 2609-2626.
    (43) W. Yan Wang, S. Zhang, H. Chen, R. He, S. Chin. ‘Cesium-Catalyzed N-Carboxamidation of Indoles for Synthesis of Indole-1-carboxamides’, J. Org. Chem. 2019, 39, 3567-3573.
    (44) E. P. Papadopoulos, S. B. Bedrosian, ‘Reactions of phenyl isocyanate and phenyl isothiocyanate with indole and metal derivatives of indole’, J. Org. Chem. 1968, 33, 4551-4554.
    (45) S. W. Youn, K. Y. Hyun, ‘Pd(II)/Ag(I)-Promoted One-Pot Synthesis of Cyclic Ureas from (Hetero)Aromatic Amines and Isocyanates’, Org. Lett. 2016, 18, 6140-6143.
    (46) N. J. Curtis ‘N-Alkylations and O-Alkylations of Nitro-Substituted 1,3-Diphenylureas: Preparations of Propellant Stabilizer Derivatives’, Aust. J. Chem., 1988, 41, 585-595.
    (47) A. S. Singh, D. Kumar, N. Mishraa, V. K. Tiwari ‘An efficient one-pot synthesis of N,N′-disubstituted ureas and carbamates from N-acylbenzotriazoles’, RSC Adv., 2016, 6, 84512-84522.
    (48) A. S. Singh, A. K. Agrahari, S. K. Singh, M. S. Yadav, V. K. Tiwari, ‘An Improved Synthesis of Urea Derivatives from N-Acylbenzotriazole via Curtius Rearrangement’, Synthesis. 2019, 51, 3443-3450.
    (49) M. S. Yadav, S. K. Singh, A. K. Agrahari, A. S. Singh, V. K. Tiwari, ‘N-Acylbenzotriazoles as Proficient Substrates for an Easy Access to Ureas, Acylureas, Carbamates, and Thiocarbamates via Curtius Rearrangement Using Diphenylphosphoryl Azide (DPPA) as Azide Donor’, Synthesis. 2021; 53, 2494-2502.
    (50) J. Chen, L. Hu, H. Wang, L. Liu, B. Yuan, ‘Copper(I)-Catalyzed N-Carboxamidation of Indoles with Isocyanates: Facile and General Method for the Synthesis of Indole-1-carboxamides,’ Eur. J. Org. Chem. 2019, 3949-3954.
    (51) A. Kapat, A. König, F. Montermini, P. Renaud, ‘A Radical Procedure for the Anti-Markovnikov Hydroazidation of Alkenes’, J. Am. Chem. Soc. 2011, 133, 13890-13893.
    (52) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, ‘Iridium-Catalyzed Intermolecular Amidation of sp3 C–H Bonds: Late-Stage Functionalization of an Unactivated Methyl Group’, J. Am. Chem. Soc. 2014, 136, 4141-4144.
    (53) D. Meyer, P. Renaud, ‘Enantioselective Hydroazidation of Trisubstituted Non-Activated Alkene’, Angew. Chem. Int. Ed. 2017, 56, 10858-10861.
    (54) C. R. Sagandira, P. Watts, ‘Synthesis of Amines, Carbamates and Amides by Multi-Step Continuous Flow Synthesis’, Eur. J. Org. Chem. 2017, 6554-6565.
    (55) X. Xiao, C. Hou, Z. Zhang, Z. Ke, J. Lan, H. Jiang, W. Zeng, ‘Iridium(III)-Catalyzed Regioselective Intermolecular Unactivated Secondary Csp3−H Bond Amidation’, Angew. Chem. Int. Ed. 2016, 55, 11897-11901.

    D-VI. References:
    1) (a) Yamamoto, Y. Synthesis of heterocycles via transitionmetal-catalyzed hydroarylation of alkynes. Chem. Soc. Rev. 2014, 43, 1575−1600 (b) Lecourt, C.; Dhambri, S.; Allievi, L.; Sanogo, Y.; Zeghbib, N.; Othman, R. B.; Lannou, M.-I.; Sorin, G.; Ardisson, J. Natural Products and Ring-Closing Metathesis: Synthesis of Sterically Congested Olefins. Nat. Prod. Rep. 2018, 35, 105−124. (c) Hughes, D.; Wheeler, P.; Ene, D. Olefin Metathesis in Drug Discovery and Development-Examples from Recent Patent Literature. Org. Process Res. Dev. 2017, 21, 1938−1962 (d) Takeda, T. Modern Carbonyl Olefination: Methods and Applications; WileyVCH: Weinheim, 2004; pp 1−338.
    2) (a) Guo, H.; Zhang, S.; Li, Y.; Yu, X.; Feng, X.; Yamamoto, Y.; Bao, M.; Palladium-Catalyzed Tail-to-Tail Reductive Dimerization of Terminal Alkynes to 2,3-Dibranched Butadienes, Angew. Chem. Int. Ed. 2022, 61, e202116870. (b) Corpas, J.; Mauleón, Pablo.; Arrayás, R. G.; Carretero, J. C. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal. 2021, 11, 7513−7551.
    3) (a) Basha, K. S.; Balamurugan, R.; Gold(I)-Catalyzed Regioselective Hydroarylation of Propiolic Acid with Arylboronic Acids Org. Lett. 2023, 25, 4803−4807 (b) Lin, P.-S.; Jeganmohan, M.; Cheng, C.-H. Cobalt(II)-Catalyzed Regio- and Stereoselective Hydroarylation of Alkynes with Organoboronic Acids. Chem. - Eur. J. 2008, 14, 11296−11299 (c) Bai, Y.; Yin, J.; Kong, W.; Mao, M.; Zhu, G. Pd-catalyzed addition of boronic acids to ynol ethers: a highly regio- and stereoselective synthesis of trisubstituted vinyl ethers. Chem. Commun. 2013, 49, 7650−7652. (d) Miyaura, N. Organoboron Compounds. In Cross-Coupling Reactions. Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2002; Vol. 219, pp 11−59.
    4) (a) Wang, X.; Zhou, L.; Lu, W.; Hydroarylation of Alkynes via Aryl C–H Bond Cleavage Current Organic Chemistry, 2010, 14, 289-307 (b) Thowfik, S.; Afsina, C. M. A., Anilkumar, G.; Ruthenium-catalyzed hydroarylation reactions as the strategy towards the synthesis of alkylated arenes and substituted alkenes RSC Adv., 2023, 13, 6246–6263 (c) Angelis, M. De.; Iazzetti, A.; Serraiocco, A.; Ciogli, A.; Asymmetric Hydroarylation Reactions Catalyzed by Transition Metals: Last 10 Years in a Mini Review Catalysts 2022, 12, 1289.
    5) Oh, C. H.; Jung, H. H.; Kim, K. S.; Kim, N. The Palladium Catalyzed Addition of Organoboronic Acids to Alkynes. Angew. Chem., Int. Ed. 2003, 42, 805−808.
    6) Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M.; Addition of Arylboronic Acids to Arylpropargyl Alcohols en Route to Indenes and Quinolines Org. Lett., 2011, 13, 19.
    7) (a) Arcadi, A.; Aschi, M.; Chiarini, M.; Ferrara, G.; Marinelli, F. Rhodium- and Palladium-Catalyzed Hydroarylation of Propargylic Amines with Arylboronic Acids Adv. Synth. Catal. 2010, 352, 493. (b) Xu, X.; Chen, J.; Gao, W.; Wu, H.; Ding, J.; Su, W. Palladium-catalyzed hydroarylation of alkynes with arylboronic acids Tetrahedron, 2010, 66, 2433. (c) Gupta, A. K.; Kim, K. S.; Oh, C. H.; Pd-Catalyzed Addition of Organoboronic Acids to Alkynes at Room Temperature Synlett 2005, 3, 457–460.
    8) (a) Kim, N.; Kim, K. S.; Gupta, A. K.; Oh, C. H.; On the regioselectivity of Pd-catalyzed additions of organoboronic acids to unsymmetrical alkynes. Chem. Commun., 2004, 618–619. (b) Lautens, M.; Yoshida, M.; Regioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkynes with a Pyridine-Substituted Water-Soluble Ligand, Org. Lett., 2002, 4, 1. (c) Rodriguez, A.; Moran, W. J. The Nitrile Functionality as a Directing Group in the Palladium-Catalysed Addition of Aryl Boronic Acids to Alkynes Lett. Org. Chem. 2010, 7, 7.
    9) (a) Nie, X.; Liu, S.; Zong, Y.; Sun, P.; Bao, J.; Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes J. Organomet. Chem. 2011, 696, 1570e1573. (b) Liu, Z.; Derosa, J.; Engle, K. M. Palladium(II)-Catalyzed Regioselective syn-Hydroarylation of Disubstituted Alkynes Using a Removable Directing Group. J. Am. Chem. Soc. 2016, 138, 13076−13081.
    10) (a) Babu, M. H.; Kumar, G. R.; Kant, R.; Reddy, M. S. Ni-Catalyzed Regio- and Stereoselective Addition of Arylboronic Acids to Terminal Alkynes with a Directing Group Tether. Chem. Commun. 2017, 53, 3894−3897.
    11) Hanna, L. E.; Konev, M. O.; Jarvo, E. R.; Nickel-Catalyzed Directed Hydroarylation of Alkynes with Boronic Acids. Eur. J. Org. Chem. 2019, 184–187.
    12) (a) Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Palladium-Catalyzed Tandem C−H Functionalization/Cyclization Strategy for the Synthesis of 5-Hydroxybenzofuran Derivatives. Org. Lett. 2017, 19, 54. (b) Fairlamb, I. J. S.; Bäuerlein, P. S.; Marrison L. R.; Dickinson J. M.; Pd-catalysed cross coupling of terminal alkynes to diynes in the absence of a stoichiometric additive CHEM. COMMUN., 2003, 632–633 (c) Oh, C. H.; Reddy, V. R.; A mild and efficient palladium-catalyzed homocoupling of lithium alkynyltriisopropoxyborates: a new route to synthesis of 1,3-diynes Tetrahedron Letters, 2004, 45, 5221–5224 (d) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A.; Nickel-Catalyzed Oxidative Coupling Reactions of Two Different Terminal Alkynes Using O2 as the Oxidant at Room Temperature: Facile Syntheses of Unsymmetric 1,3-Diynes Org. Lett., 2009, 11, 3.
    13) (a) Rao, S.; Joy, M. N.; Prabhu, K. R.; Employing Water as the Hydride Source in Synthesis: A Case Study of Diboron Mediated Alkyne Hydroarylation J. Org. Chem. 2018, 83, 13707−13715 (b) Zhao, C-Q.; Chen, Y-G.; Qiu, H.; Wei, L.; Fang, P.; Mei, T-S.; Water as a Hydrogenating Agent: Stereodivergent Pd-CatalyzedSemihydrogenation of Alkynes Org. Lett. 2019, 21, 1412−1416 (c) Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D-P, Chen, L.; Li, X.; Dong, Y.; Liu, H.; A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B2pin2/H2O Chem. Commun., 2019, 55, 4355—4358.
    14) (a) Corey, E. J. Catalytic Enantioselective Diels-Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications. Angew.Chem., Int. Ed. 2002, 41, 1650. (b) Pindur,U.; Lutz, G.; Otto, C. Acceleration and selectivity enhancement of Diels-Alder reactions by special and catalytic methods. Chem. Rev.1993, 93, 741. (c) Cruz-Morales. J. A.; Gutiérrez-Flores. C.; Zárate-Saldaña, D.; Burelo, M.; García-Ortega, H.; Gutiérrez, S.; Synthetic Polyisoprene Rubber as a Mimic of Natural Rubber: Recent Advances on Synthesis, Nanocomposites, and Applications Polymers, 2023, 15, 4074.
    15) Hu, H.; Xu, W-H.; Kang, W-X.; Sun, W.; Sun, R.; Wei, X-H.; Sun, M.; Co(III)-Catalyzed stereospecific synthesis of (E)-homoallylic alcohols with 4-vinyl-1,3-dioxan-2-ones: late-stage C–H homoallylation of indole derivatives Org. Chem. Front., 2021, 8, 4459.
    16) Corpas, J.; Mauleon, P.; Arrayas, R. G.; Carretero, J. C. anti-Hydroarylation of Activated Internal Alkynes: Merging Pd and Energy Transfer Catalysis. Org. Lett. 2020, 22, 6473.
    17) (a) Kurtz, K. C. M.; Hsung, R.P.; Zhang, Y.; A Ring-Closing Yne-Carbonyl Metathesis of Ynamides Org. Lett. 2006, 8, 2, 231–234 (b) Sharif, S. I. A.; Calder, E. D. D.; Harkiss, A. H.; Maduro, M.; Sutherland, A.; Synthesis of Allylic Amide Functionalized 2H-Chromenes and Coumarins Using a One-Pot Overman Rearrangement and Gold(I)-Catalyzed Hydroarylation J. Org. Chem. 2016, 81, 20, 9810–9819 (c) Lasányi, D.; Tolnai, G. L.; Copper-Catalyzed Ring Opening of [1.1.1]Propellane with Alkynes: Synthesis of Exocyclic Allenic Cyclobutanes Org. Lett. 2019, 21, 24, 10057–10062 (d) Volchkov, I.; Lee, D.; Asymmetric Total Synthesis of (‒)-Amphidinolide V through Effective Combinations of Catalytic Transformations J. Am. Chem. Soc. 2013, 135, 14, 5324–5327 (e) Chen, Y-Y.; Chen, K-L.; Tyan, Y-C.; Liang, C-F.; Lin, P-C.; Synthesis of substituted 3-methylene-2,3-dihydrobenzofurans and 3-methylbenzofurans by rhodium (II)-catalyzed annulation Tetrahedron, 2015, 71, 6210e6218 (f) Feng, Y-S.; Xie, C-Q.; Qiao, W-L.; Xu, H-J.; Palladium-Catalyzed Trifluoroethylation of Terminal Alkynes with 1,1,1-Trifluoro-2-iodoethane, Org. Lett. 2013, 15, 4, 936–939.
    18) (a) Iwasaw, N.; Watanabe, S.; Ario, A.; Sogo, H.; Re(I)-Catalyzed Hydropropargylation of Silyl Enol Ethers Utilizing Dynamic Interconversion of Vinylidene-Alkenylmetal Intermediates via 1,5-Hydride Transfer, J. Am. Chem. Soc. 2018, 140, 25, 7769–7772 (b) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S.; Meyer, C.; Cossy, J.; A Convergent Approach towards the C1–C11 Subunit of the Phoslactomycins and Formal Synthesis of Phoslactomycin B, Org. Lett. 2009, 11, 4, 935–938 (c) Rajagopal, B.; Chou, C-H.; Chung, C-C.; Lin, P-C.; Synthesis of Substituted 3-Indolylimines and Indole-3-carboxaldehydes by Rhodium(II)-Catalyzed Annulation, Org. Lett. 2014, 16, 14, 3752–3755 (d) Intramolecular Reactions of Alkynes with Furans and Electron Rich Arenes Catalyzed by PtCl2: The Role of Platinum Carbenes as Intermediates Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M.; J. Am. Chem. Soc. 2003, 125, 19, 5757–5766.
    19) (a) Feng, Y-S.; Xie, C-Q.; Qiao, W-L.; Xu, H-J.; Palladium-Catalyzed Trifluoroethylation of Terminal Alkynes with 1,1,1-Trifluoro-2-iodoethane, Org. Lett. 2013, 15, 4, 936–939 (b) Nanjo, T.; Kato, N,; Takemoto, Y.; Oxidative Decarboxylation Enables Chemoselective, Racemization-Free Esterification: Coupling of α-Ketoacids and Alcohols Mediated by Hypervalent Iodine (III), Org. Lett. 2018, 20, 18, 5766–5769.
    20) Majetich, G.; Zou, G.; Hu, S.; A Concise Synthesis of (þ)-Salvadione B, Org. Lett., 2013, 15, 4924–4927.
    21) Navaratne, P. V.; Grenning, A. J.; Tetrahydrobenzochromene Synthesis Enabled by a DeconjugativeAlkylation/Tsuji−Saegusa−Ito Oxidation on Knoevenagel Adducts Org. Lett. 2018, 20, 4566−4570.
    22) Qu, Q.; Gao, X.; Gao, J.; Yuan, G.; A highly efficient electrochemical route for the conversion of aldehydes to nitriles, Sci China Chem, 2015, 58, 747–750.
    23) Paul, C. E.; Rajagopalan, A.; Lavandera, I.; Gotor-Ferna´ndez, V.; Kroutil, W.; Gotor, V.; Expanding the regioselective enzymatic repertoire: oxidative mono-cleavage of dialkenes catalyzed by Trametes hirsute Chem. Commun., 2012, 48, 3303–3305.
    24) Rohlmann, R.; Daniliuc, C-G.; and Manchen˜o O. G.; Highly enantioselective synthesis of chiral 7-ring O- and N-heterocycles by a one-pot nitro-Michael–cyclization tandem reaction Chem. Commun., 2013, 49, 11665-11667
    25) Nanjo, T.; Kato, N,; Takemoto, Y.; Oxidative Decarboxylation Enables Chemoselective, Racemization-Free Esterification: Coupling of α-Ketoacids and Alcohols Mediated by Hypervalent Iodine (III), Org. Lett. 2018, 20, 5766–5769.
    26) Srinivasan, M.; Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G.; Syntheses and Structures of Isomeric [6.6]- and [8.8]Cyclophanes with 1,4-Dioxabut-2-yne and 1,6-Dioxahexa-2,4-diyne Bridges, J. Org. Chem. 2001, 66, 4299–4303.
    27) Piel, I.; Steinmetz, M.; Hirano, K.; Fröhlich, R.; Grimme, S.; Glorius, F.; Highly Asymmetric NHC-Catalyzed Hydroacylation of Unactivated Alkenes, Angew. Chem. Int. Ed. 2011, 50, 4983 –4987.
    28) Martı´nez-Gualda, A. M.; Domingo-Legarda, P.; Rigotti, T.; Dı´az-Tendero, S.; Fraile, A.; Alema´n, J.; Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers, Chem. Commun., 2021, 57, 3046-3049.
    29) Barluenga, J.; Fan˜ana´s, F. J.; Sanz, R.; Marcos, C.; Ignacio, J. M.; 2-Arylallyl as a new protecting group for amines, amides and alcohols Chem. Commun., 2005, 933-935.
    30) Song, X-F.; Ding, T-M.; Zhu, D.; Huang, J.; Chen, Z-M.; Lewis-Acid-Mediated Intramolecular Trifluoromethylthiolation of Alkenes with Phenols: Access to SCF3-Containing Chromane and Dihydrobenzofuran Compounds, Org. Lett. 2020, 22, 7052−7056.
    31) Adam, W.; Heil, M.; Novel Transformations of 1,2-Dioxetanes: β-Hydroxy Ethers by Addition of Alkyllithium Reagents, EurJIC, 1992, 125, 235-241.
    32) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C.; Pd-Catalyzed Alkyl to Aryl Migration and Cyclization: An Efficient Synthesis of Fused Polycycles via Multiple C-H Activation, J. Am. Chem. Soc. 2004, 126, 7460–7461.
    33) Shu, C.; Mega, R. S.; Andreassen, B. J.; Noble, A.; Aggarwal, V. K.; Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade, Angew. Chem. Int. Ed. 2018, 57, 15430–15434.
    34) Tan, S. M.; Dr. Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S.; Multicomponent Diene-Transmissive Diels–Alder Sequences Featuring Aminodendralenes, Angew. Chem. Int. Ed. 2016, 55, 3081–3085.
    35) Lu, P.; Ren, X.; Xu, H.; Lu, D.; Sun, Y.; Lu, Z.; Iron-Catalyzed Highly Enantioselective Hydrogenation of Alkenes, J. Am. Chem. Soc. 2021, 143, 12433−12438.

    下載圖示
    QR CODE