簡易檢索 / 詳目顯示

研究生: 洪志城
Jeng-Han Wang
論文名稱: 研究改變催化劑、外在環境條件和燃料對於蒸氣重組反應的影響
Investigation of the effects of metals, oxides, operational conditions and fuels on the steam reforming
指導教授: 王禎翰
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 144
中文關鍵詞: 蒸氣重組反應乙醇催化劑
英文關鍵詞: steam reforming, ethanol, catalyst
論文種類: 學術論文
相關次數: 點閱:200下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究方向主要是以Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pd、Au這十種金屬為主的催化劑,探討不同條件下對反應的改變,主要方向有三個,第一個是支撐物的不同,第二個是外在環境的改變,我們在這邊主要是改變水和氧氣的比例,第三個則是改變燃料的選擇,利用上面所提到三種不同的條件,來探討在重組反應下的趨勢。我們實驗的方向分成三個部分:
    第一部分我們主要探討支撐物在乙醇重組反應下的影響,我們使用SiO2、 Al2O3、Ce-Al2O3這三種不同金屬氧化物當作支撐物,並在相同條件下去進行實驗。討論三種金屬氧化物在氫氣產率上的差異。
    第二部分則是討論外在環境的影響,這邊主要是利用水和氧氣的改變來進行討論,這邊細分三個部分 1.改變乙醇加水的比例利用Rh/Al2O3去進行一系列比較 2.則是利用Al2O3為支撐物去調控空氣的流量進行一系列的實驗, 3.則是將催化劑進行自發放熱反應,在這邊則是改變C/O ratio 的大小來探討其趨勢。
    第三部分則是改變燃料,我們利用不同碳數的醇類當作燃料進行重組反應,討論氫氣產率對應在醇類上的不同。
    綜合上面三個部分實驗我們可以得到一些明顯的趨勢,第一部分可以得知金屬氧化物的活性會影響到氫氣的產率大小,第二部分則是可以得知當水加入越多或是空氣流量越大也能提高氫氣的產率,第三部分則是可以知道說當醇類的碳數越少時對於氫氣產率越能提高。

    Herein we experimentally investigate the reforming mechanism of alcohols to find the most efficient method for hydrogen production. The reforming behavior can be affected by three major catageories: composition of catalysts, operational condictions, and alcohols. First, we study the reforming of ethanol, a environmental friendly biomass, on a series of chemically related catalysts, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) composited on Al2O3, SiO2, and CeO2. The catalytic trends of metals have been previously examined and show that group 11 metals (Cu, Ag, Au) help for the oxidation process, Co, Ni, Pd, and Pt gives the highest C2H4 yield, and Ru, Rh and Ir shows the highest hydrogen yield. In the present study, we further reveal influence from oxides that Al2O3 assists for dehydeation of ethanol forming C2H4, SiO2 is considered as an insert supporter, and CeO2, with high oxygen capacity, give the best reforming performance. Second, we examine the reforming behavior at various operational conditions. The result shows that hydrogen yield, conversion efficiency and C1 selectivity will be significantly improved as the oxidant reagents of O2 and H2O are increased. Furthermore, the reforming process becomes autothermal when O2 ratio is sufficiently high. Also, the C/O ratio has been optimized in the autothermal reforming process. Finally, we examined the performance of methanol, ethanol, 1-propanol, 3-propnaol, and 1-butanol reformings to study the effects from fuel. The result shows that the hydrogen yield decreases as the carbons of alcohols increase.

    第一章:緒論 15 1-1 介紹 15 1-2 乙醇重組反應的基本理論與現階段研究介紹 16 第二章:實驗部分 22 2-1 實驗用藥品 22 2-2 實驗用氣體 24 2-3 實驗器材與儀器 25 2-4 金屬前驅物用量 26 2-5 使用含浸法製備催化劑 28 2-6 催化劑特性的鑑定 30 2-7 活性測試產物的分析介紹 32 2-8 管柱的活化與檢量線 35 2-9 乙醇重組活性測試 41 2-10 Gas Hour Space Velocity、轉換效率與產率選擇率計算 46 第三章 結果與討論 48 3-1 ex situ 催化劑特性鑑定分析 48 3-2 不同支撐物對乙醇重組反應之影響 54 3-3 利用Rh在不同水/乙醇比例下進行乙醇重組反應 81 3-4 使用純乙醇在不同空氣流量和溫度下的現象 86 3-5 使用水/乙醇=3在不同空氣流量和溫度下的現象 100 3-6 比較兩種不同燃料在相同條件下的差異 113 3-7 利用Ce-Al2O3和Al2O3當作基底在不同金屬下的自發放熱反應 124 3-8使用不同碳數醇類來進行蒸氣重組反應 134 第四章 結論 138 4-1 結論 138 4-2 未來研究方向 141 參考文獻 142 圖錄 7 表錄 11

    1 R. M. Navarro, M. A. Pena, and J. L. G. Fierro*, Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 107 (2007), 3952.
    2 Piscina*a, Pilar Ramı´rez de la and Homs*b, Narcı´s, Use of biofuels to produce hydrogen (reformation processes). Chemical Society Reviews 37, 2459 (2008).
    3 J.R. Salge, G.A. Deluga, L.D. Schmidt*, Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis 235 (2005), 69.
    4 Agus Haryanto, † Sandun Fernando, *,† Naveen Murali,† and Sushil Adhikari†, Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels 19 (2005), 2098.
    5 Jian-Mei Li, Fei-Yang Huang, Wei-Zheng Weng*, Xiao-Qing Pei, Chun-Rong Luo, Hai-Qiang Lin, Chuan-Jing Huang, Hui-Lin Wan*, Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catalysis Today 131 (2008), 179.
    6 S. Cavallaro b, V. Chiodo a , S. Freni a ,N. Mondello a , F. Frusteri a, *, Performance of Rh/Al2O3 catalyst in the steam freforming of ethanol: H2 production for MCFC. Applied Catalysis A: General 249 (2003), 119.
    7 J.P. Breen, R. Burch*, H.M. Coleman, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental 39 (2002), 65.
    8 Maria A. Goula, Sotiria K. Kontou, Panagiotis E. Tsiakaras*, Hydrogen production by ethanol steam reforming over a commercial Pd/r-Al2O3 catalyst. Applied Catalysis B: Environmental 49 (2004), 135.
    9 Hongqing Chen1, Hao Yu1*, Yong Tang2, Minqiang Pan2, Guangxing Yang1, Feng Peng1*, Hongjuan Wang1, Jian Yang1, Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry 18 (2009), 191.
    10 Hua Song, Umit S. Ozkan*, Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis 261 (2009), 66.
    11 F. Frusteria, *, S. Frenia, V. Chiodoa, S. Donatoa, G. Bonuraa, S. Cavallarob, Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. International Journal of Hydrogen Energy 31 (2006), 2193.
    12 Min Hye Youn, Jeong Gil Seo, Sunyoung Park, Ji Chul Jung, Dong Ryul Park, In Kyu Song*, Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on ce-modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International Journal of Hydregen Energy 33 (2008), 5052.
    13 Min Hye Youn, Jeong Gil Seo, Sunyoung Park, Ji Chul Jung, Dong Ryul Park, In Kyu Song*, hydrogen production by auto-thermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support. International Journal of Hydregen Energy 33 (2008), 7457.
    14 H. Wanga, b, Y.Liua,*, L. Wanga, Y.N. Qina, Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal 145 (2008), 25.
    15 Blekkan, Philippe Bichon ‧ Gro Haugom ‧ Hilde J. Venvik ‧ Anders Holmen Æ Edd A., Steam Reforming of Ethanol Over Supported Co and Ni Catalysts. Top Catal 49 (2008), 38.
    16 Luca Barattinia, Gianguido Ramisa, Carlo Resinia,1, guido Buscaa,*, Michele Sisanib, Umberto Costantinob, Reaction path of ethanol and acetic acid steam reforming over Ni-Zn-Al catalysts. Flow reactor studies. Chemical Engineering Journal 153 (2009), 43.
    17 Subramani Velua, 1, Kenzi Suzukia,2, Munusamy Vijayarajb, Sanmitra Barmanb, Chinnakonda S. Gopinathb,*, In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental 55 (2005), 287.
    18 F. Marinoa, M. Boveria, G. Baronettib, M. Labordea,*, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/g-Al2O3 catalysts. Effect of Ni. International Journal of Hydregen Energy 26 (2001), 665; Fagen Wang, Yong Li, Weijie Cai, Ensheng Zhan, Xiaoling Mu, Wenjie Shen*, Ethanol steam reforming over Ni and Ni-Cu catalysts. Catalysis Today 146 (2009), 31; Maria Cruz Sanchez-Sanchez, *, ‡ Rufino M. Navarro Yerga,*,‡ Dimitris I. Kondarides,§ Xenophon E. Verykios,§ and Jose Luis G. Fierro‡, Mechanistic Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production on Pt, Ni, and PtNi Catalysts Supported on γ-Al2O3†. J. Phys. Chem. A 114 (2010), 3873.
    19 Andreia Cristina Furtadoa, Christian Goncalves Alonsoa, Mauricio Pereira Cantaob, Nadia Regina Camargo Fernandes-Machadoa,*, Bimetallic catalysts performance during ethanol steam reforming: Influence of support materials. International Journal of Hydregen Energy 34 (2009), 7189; N. Laosiripojanaa, *, S. Assabumrungratb, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst. Applied Catalysis B: Environmental 66 (2006), 29.
    20 Jia-Lin Bia, b, Yeh-Yeau Honga,b, Chia-Chan Leea,b,Chuin-Tih Yehb, Chen-Bin Wanga,*, Novel zirconia-supported catalysts for low-temperature oxidative steam reforming of ethanol. Catalysis Today 129 (2007), 322.
    21 Fabien Aupretre, Claude Descorme *, Daniel Duprez, Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications 3 (2002), 263.
    22 M.C. Sánchez-Sánchez, R.M. Navarro*, J.L.G. Fierro, Ethanol steam reforming over Ni/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 32 (2007), 1462
    23 Xiaoying Liu, † Bingjun Xu, † Jan Haubrich,† Robert J. Madix,‡ and Cynthia M. Friend*,†,‡, Surface-Mediated Self-Coupling of Ethanol on Gold. J. AM. CHEM. SOC. 131 (2009), 5757.
    24 Andreasen, A.; Lynggaard, H.; Stegelmann, C.; Stoltze, A microkinetic model of the methanol oxidation over silver P. Surf. Sci. 5 (2003), 544.
    25 Senkan*, Shici Duan and Selim, Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Methods. Ind. Eng. Chem. Res. 44 (2005), 6381.
    26 Dimitris K. Liguras, Dimitris I.Kondarides, Xenophon E. Verykios*, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental 43 (2003), 345.

    下載圖示
    QR CODE