簡易檢索 / 詳目顯示

研究生: 劉兆軒
LIU, Zhao-Xuan
論文名稱: 應用於非圓形車削之可變刀具進給機構之動態建模與伺服控制
Dynamic Modelling and Servo Control of a Variable Tool Feeding Mechanism for Noncircular Machining
指導教授: 陳俊達
Chen, Chun-Ta
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 橢圓車削混合控制自動定位控制閉迴路控制
英文關鍵詞: Eillptical turning, Hybrid control, Automatic positioning control, Closed-loop control
DOI URL: http://doi.org/10.6345/NTNU202000010
論文種類: 學術論文
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是藉由控制器設計,使得非圓形車削機台具有閉迴路控制,以提升車削精度。文中,首先針對刀具滑台的運動狀態,使用Lagrange方法、Lagrange乘數和虛功法,進行動態建模,再運用達朗貝爾原理(D’Alembert’s principle)推導出動態方程式。在伺服控制上,本文針對滑台自動定位與主軸轉速控制,提出—混合控制法。在滑台定位上,使用雷射位移計作為感測裝置,進行進給量的即時偵測,再由NI Single-Board 9632作為控制平台,並以LabVIEW設計人機介面,以控制進給精度;在主軸轉速控制,本研究直接讀取馬達驅動器的轉速訊號至控制平台,以監控主軸轉速。實驗結果顯示,本文所提出之混合控制比只使用滑台自動定位控制器進行非圓形車削,更能有效地提升成品的精度。

    In the traditional mechanical factory, the cutting of non-circular workpiece is still mainly achieved by changing the model. However, when cutting other shapes of the workpiece, the model must be redesigned, which will increase the cost. The machine used in this paper has been equipped with servo motor with connecting rod and mechanism, so that when the non-circular workpiece is turned, the model is no longer needed. In this paper, a hybrid controller is designed to make noncircular turning process smoother and more accurate.
    In dynamic modeling, the Lagrange method along with the Lagrange multiplier and the virtual work principle were applied to device, the equations of motion, then the dynamic equations were simplied using the D’Alembert’s principle.
    In the hybrid control, a controller for the automatic positioning of the slide table with a laser displacement meter being used for instantaneous detection of the feeding displacement. The NI Single-Board 9632 is used as a control platform with the embedded LabVIEW for human-machine interface design for more accurate feeds. The other controller for the spindle speed directly reads the encoder signal of the motor driver into the control platform to realize the monitoring and control of the spindle speed.
    From the experimental results, according to the different turning methods, the accuracy of the turning is improved after the correction. Moreover, the proposed hybrid control for turning is better than using the slide table automatic positioning controller based on the accuracy of the finished product. Concludes that the use of the hybrid control, and the calibration is completed first, and the obtained precision of the finished product is better. The research results show the feasibility of the closed loop control proposed in this paper.

    摘要.....................................................i Abstract................................................ii 致謝....................................................iv 目錄.....................................................v 圖目錄..................................................ix 表目錄..................................................xv 第一章 緒論...............................................1 1.1 前言.................................................1 1.2 文獻回顧..............................................2 1.2.1 橢圓車削方法........................................2 1.2.2動態建模.............................................5 1.2.3馬達應用控制.........................................7 1.3 研究動機與目的.......................................12 1.4 論文架構.............................................12 第二章 非圓形車削之可變刀具進給機構.......................14 2.1 硬體架構說明.........................................14 2.2 橫向滑台.............................................14 2.3 刀具滑台.............................................15 2.4 馬達皮帶輪...........................................16 2.5 馬達驅動器與伺服馬達.................................17 2.6 控制器..............................................20 2.7 雷射位移計...........................................20 第三章 可變刀具進給機構之動態建模.........................24 3.1 Lagrange方程式......................................24 3.2 Lagrange乘數........................................24 3.3 機構的運動分析.......................................27 3.3.1 搖桿的擺動角度.....................................29 3.3.2 連桿與搖桿的角速度.................................30 3.3.3 刀具與搖桿固定點之x、y方向距離......................31 3.3.4 刀具進給之速度.....................................32 3.3.5 曲柄與連桿之動態關係...............................33 3.3.6 動態公式建立.......................................35 3.3.7 刀具滑台機構的動態建模..............................37 3.3.8 以Lagrange乘數表示拘束力...........................39 3.3.9 動態模型建立.......................................40 第四章 可變刀具進給車床之校正與優化.......................44 4.1 機台校正.............................................44 4.1.1 刀具滑台的進給量和刀座的進給量對應之量測.............44 4.1.2 雷射位移計的電壓與距離量對應的量測..................46 4.2 硬體優化.............................................47 4.2.1 切斷刀............................................47 4.2.2 工件套筒...........................................49 4.2.3 中心對準...........................................49 4.2.4 雷射感測系統設計...................................50 第五章 非圓形車削之控制迴路設計...........................52 5.1控制迴路設計..........................................52 5.2 LabVIEW 介紹........................................52 5.3 LabVIEW FPGA........................................54 5.4 機台自動化設計.......................................54 5.5 主程式設計...........................................56 5.6 滑台自動定位控制器設計................................58 5.7 主軸轉速控制器設計...................................60 5.7.1 IC模組的製作.......................................61 5.7.2 軟體端的設計.......................................65 第六章 結果與討論........................................68 6.1 控制介面.............................................70 6.1.1 滑台自動定位控制介面...............................70 6.1.2 主軸轉速控制介面...................................77 6.1.3 成品量測介面.......................................79 6.2 實際橢圓車削.........................................81 6.2.1 使用滑台自動定位控制進行車削並在車削前完成校正.......81 6.2.2 使用滑台自動定位控制進行閉迴路車削並即時校正進刀量....86 6.2.3 使用滑台自動定位/主軸轉速之混合控制進行閉迴路車削並在車削前完成校正...91 6.2.4 使用滑台自動定位/主軸轉速之混合控制進行閉迴路車削並即時校正進刀量...99 6.2.5 綜合比較與分析....................................104 6.3 多重橢圓車削........................................106 第七章 結論與未來展望...................................112 參考資料................................................114

    參考資料

    [1] 熊治民,“台灣機械設備製造業發展現況與展望”,機械工業,第430期,第9頁,2019年1月
    [2] 汪詩偉,“應用於橢圓車削之新型快速刀具滑台設計”,國立台灣師範大學,碩士論文,2018年11月
    [3] 謝祥瑋,“壓電振動輔助車削對工件表面精度影響之研究”,國立聯合大學,碩士論文,2014年7月
    [4] “TAGA 超音波橢圓震動切削裝置 綜合型錄”,URL:
    http://www.masterdalian.com/cp/69.html
    [5] 陳韋勳,“超音波橢圓振動切削數控程式開發”,國立虎尾科技大學,碩士論文,2016年7月
    [6] 簡國瑜,“超音波振動輔助車削之研究”,國立中正大學,碩士論文,2002年6月
    [7] 林冠宇,“超音波橢圓振動輔助車削之研”,國立聯合大學,碩士論文,2011年7月
    [8] 陳佑恆,“變化切削點數目及位置之多邊形車削”,國立中興大學,碩士論文,2010年7月
    [9] Ha, Jih-Lian, Rong-Fong Fung, Kun-Yung Chen, Shao-Chien Hsien, "Dynamic modeling and identification of a slider-crank mechanism", National Kaohsiung First University, Master's degree, 3 June 2005
    [10] Fabio Abel Gomez-Becerra, Andres Blanco-Ortegaz, Carlos Daniel Garcia-Beltranz, Cesar Humberto Guzman Valdivia, Hector Ramon Azcaray Riveraz, Aldo Aaron Hernandez Cervantes, "Control of a new parallel robot for hip rehabilitation", Instituto Tecnológico Mario Molina Pasquel y Henriquez, 26 November 2017
    [11] Chun-Ta Chen, Te-Tan Liao, "Optimal Path Programming of the Stewart Platform Manipulator Using the Boltzmann–Hamel–d’Alembert Dynamics Formulation Modelz", Da Yeh University, 7 December 2007
    [12] 伍健安,“電機控制教學平台之開發與控制應用”,國立台灣科技大學,碩士論文,2018年7月
    [13] 黃芃毓,“Delta機械手臂之最佳路徑規劃與運動控制研究”,國立台灣科技大學,碩士論文,2015年6月
    [14] 簡延儐,“Delta機械臂之設計製作與操作實驗”,國立台灣海洋大學,碩士論文,2015年06月
    [15] 江應平,“電動巴士之主動式安全控制器設計”,國立臺灣科技大學,碩士論文,2018年07月
    [16] “伺服系統 - 交流伺服馬達與驅動器”,URL:
    http://www.deltaww.com/Products/CategoryListT1.aspx?CID=060201&PID=1148&hl=zh-TW&Name=ASDA-A2R+%E7%B3%BB%E5%88%97
    [17] “台達交流伺服驅動器ASDA-A2 系列”,URL:
    http://www.shinwe.com.tw/wp-content/uploads/2018/06/ASDA-A2.pdf
    [18] “LabVIEW FPGA介紹”,S. D. L. Microsystems,國立成功大學,臺南市,URL:https://www.slideserve.com/kerryn/labview-fpga
    [19] “雷射位移計 Keyence”,國立中興大學,URL:
    http://web.nchu.edu.tw/~daw/SOP/SOP_laservibrometer_keyence.pdf
    [20] “CMOS雷射位移感測器 IL系列 使用說明書”,URL:
    https://www.keyence.com.tw/products/measure/laser1d/il/models/il-030/downloads/?mode=ma
    [21] “Lagrange乘數”,李柏堅 助理教授,中華科技大學,URL: https://www.youtube.com/watch?v=lDehPPIgQpI.
    [22] 惠汝生,Labview 7.1 Express 圖控程式應用,二版一刷,全華科技圖書股份有限公司,臺北市,2005年10月
    [23] D. T. Greenwood, PRINCIPLES OF DYNAMICS, 1st ed.,Englewood Cliffs, New Jersey: Prentice-Hall INC., 1965
    [24] “Delta AC Servo Drive & Motor”,URL:
    http://www.deltronics.ru/images/catalogue/ASDAA2_C_EN_20180302.pdf

    無法下載圖示 電子全文延後公開
    2025/01/30
    QR CODE