簡易檢索 / 詳目顯示

研究生: 張耕瑋
論文名稱: 短脈衝摻鐿光纖雷射及光子晶體光纖產生超連續光譜之研究
A study on short-pulse Yb-doped fiber laser and the supercontinuum generation in photonic crystal fiber
指導教授: 鄭超仁
Cheng, Chau-Jern
林奎輝
Lin, Kuei-Huei
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 42
中文關鍵詞: 超連續光譜摻鐿光纖雷射短脈衝光纖熔接光子晶體光纖
英文關鍵詞: supercontinuum, ytterbium-doped fiber laser, short-pulse, fiber fusion splice, photonic crystal fiber
論文種類: 學術論文
相關次數: 點閱:183下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們研製出了一種具有極寬波長範圍的高功率超連續光譜光纖光源,並將其應用在材料的光學特性量測。
    我們研製了可調式環形腔摻鐿光纖雷射,其操作模式可在連續波、Q開關鎖模、基頻鎖模和諧波鎖模之間切換。連續波輸出時之雷射波長可從1065 nm 調整至1082 nm,基頻鎖模時之脈衝寬度則可從約200 ps 調整至約 6 ns。我們成功地熔接了傳統單模光纖與光子晶體光纖,使得雷射光從單模光纖至光子晶體光纖的耦合效率最高可達到77%。我們將摻鐿光纖雷射產生的脈衝經過摻鐿光纖放大器進行能量放大,再耦合進入非線性光子晶體光纖,成功地得到帶寬超過 1100 nm的光纖超連續光譜。我們量測了光纖超連續光譜的穩定度、同調長度和脈衝寬度,並且使用光纖超連續光譜來量測石墨烯及葉綠素的穿透特性。

    In this study, we have demonstrated a high-power fiber supercontinuum (SC) source with wide spectral range, and use it to measure the optical properties of materials.
    A tunable mode-locked ytterbium-doped fiber ring laser is built. The operation state could be switched among continuous wave (CW), Q-switched mode-locking, fundamental mode-locking and harmonic mode-locking. For CW operation, the laser wavelength could be tuned from 1065 nm to 1082 nm. For fundamental mode-locking, the pulse duration could be tuned from 200 ps to 6 ns. We have fusion spliced the photonic crystal fiber (PCF) with the traditional single-mode fiber, and the highest coupling efficiency is about 77%. A ytterbium-doped fiber amplifier (YDFA) is used to amplify the pulses from the tunable mode-locked ytterbium-doped fiber laser. By injecting the amplified pulses into the nonlinear PCF, broad bandwidth SC generation of over 1100 nm have been achieved. We have measured the stability, coherence length and pulse duration of supercontinuum, and use the SC source to measure the transmission spectra of graphene and chlorophyll.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機及目標 1 1.2 文獻分析 2 1.2.1 短脈衝光纖雷射 2 1.2.2 光子晶體熔接 3 1.2.3 超連續光譜產生 3 1.3 論文架構 5 第二章 短脈衝摻鐿光纖雷射 6 2.1 摻鐿光纖雷射介紹 6 2.1.1 雷射 6 2.1.2 光纖雷射 8 2.1.3 摻鐿光纖雷射 9 2.2 短脈衝產生機制 10 2.2.1 飽和吸收體 10 2.2.2 非線性偏振旋轉 11 2.3 短脈衝摻鐿光纖雷射實驗架設 12 2.4 實驗結果及分析 14 2.4.1 操作模式切換 14 2.4.2 脈衝寬度量測 15 2.4.3 光譜量測 17 第三章 光纖熔接技術 19 3.1 光纖熔接及光子晶體光纖介紹 19 3.2 光纖熔接機 22 3.3 實驗結果及分析 24 第四章 光纖超連續光譜 26 4.1 超連續光譜介紹 26 4.2 超連續光譜產生機制 27 4.3 光纖超連續光譜實驗架設 29 4.3.1 光纖超連續光譜系統 29 4.3.2 同調長度量測實驗 30 4.4 光纖超連續光譜的應用 31 4.4.1 石墨烯量測實驗 31 4.4.2 葉綠素溶液量測實驗 32 4.5 實驗結果及分析 33 4.5.1 光譜量測 33 4.5.2 脈衝寬度量測 35 4.5.3 同調長度量測 36 4.5.4 石墨烯量測 37 4.5.5 葉綠素溶液量測 38 第五章 結論與未來工作 39 參考文獻 41

    [1] NKT Photonics, “Compact ultra-bright supercontinuum light source”, Application Note, Crystal Fibre A/S.
    [2] S. Kivistö, R. Herda, and O. G. Okhotnikov, "All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating," Opdist. Express 16, 265-270 (2008).
    [3] O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications”, New J. Phys. 6, 177 (2004).
    [4] NKT Photonics, “Splicing Single Mode PCFs”, NKT Photonics Application Note V1.0 November 2009
    [5] K. P. Hansen and R. E. Kristiansen, “Supercontinuum Generation in Photonic Crystal Fibers”, Application Note, Crystal Fibre A/S.
    [6] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2001).
    [7] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers”, IEEE J. Quantum Electron. 33, 1049 (1997).
    [8] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B 16, 46 (1999).
    [9] C. K. Nielsen and S. R. Keiding, "All-fiber mode-locked fiber laser," Opt. Lett. 32, 1474-1476 (2007).
    [10] F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser & Photon. Rev. 2, 58–73 (2008).
    [11] M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers”, Opt. Lett. 28, 1873 (2003).
    [12] FX Kärtner and U. Keller, “Stabilization of soliton-like pulses with a
    slow saturable absorber”, Opt. Lett. 20, 16–18 (1995).
    [13] M. E. Fermann, “Ultrafast fiber oscillators”, in Ultrafast Lasers, M. E. Fermann, ed. (Marcel Dekker, 2003), Chap. 3.
    [14] F. X. Kaertner, Mode-locked Laser Theory, October 29, 2006
    [15] Thorlabs, http://www.thorlabs.hk/index.cfm?
    [16] Fujikura , “Instruction Manual:Arc Fusion Splicer FSM-60S”.
    [17] R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [18] R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [19] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [20] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

    下載圖示
    QR CODE