研究生: |
戚祐寧 Chi, Yu-Ning |
---|---|
論文名稱: |
線上學習者分心行為偵測研究 Online Learner's Distraction Behavior Detection Study |
指導教授: |
李忠謀
Lee, Chung-Mou |
口試委員: |
江政杰
Chiang, Cheng-Chieh 劉寧漢 Liu, Ning-Han 柯佳伶 Koh, Jia-Ling 李忠謀 Lee, Chung-Mou |
口試日期: | 2023/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 學習行為偵測 、人臉偵測 、頭部姿勢偵測 、視線偵測 、哈欠偵測 、線上學習 |
英文關鍵詞: | learning behavior detection, face detection, head pose detection, gaze detection, yawning detection, online learning |
研究方法: | 實驗設計法 、 文件分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202301016 |
論文種類: | 學術論文 |
相關次數: | 點閱:247 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當我們從事重要的事情時,保持專心與集中精力至關重要。舉例來說,當駕駛車輛時,如果不專心駕駛不僅可能造成交通事故,還有可能導致人身傷亡和財物損失。再者,對於醫生來說,在進行手術時也必須保持專注,因為任何的分心都有可能導致嚴重的醫療錯誤,造成不必要的傷害。此外,在學習方面,當學生在讀書時,如果不能保持專心,可能會錯過重要的概念,影響其學習效果。
本研究以線上學習者行為偵測為例,藉由電腦內建鏡頭拍攝學生上課情況,透過偵測發現課堂中常見的不專心行為。本研究提出以人臉偵測判斷影像中學生是否坐在座位上,並藉由頭部姿勢及眼睛視線判斷學生是否保持專注;同時使用哈欠偵測確認學生疲憊情況。此外,針對學生上課電腦螢幕進行場景偵測,自動辨別課程段落,進而探討學生是否專心於課堂。
本研究的實驗資料源自於本校研究所六名研究生協助拍攝的實際線上課程學習影像,通過實驗驗證各項行為偵測方法及整體可行性。實驗結果顯示,系統在整體學習專心程度偵測的準確率為 88%,由此可知,本研究方法能有效地偵測出線上學習者的專心與不專心。因此,本研究將進一步針對各受試者及各課程進行深入探討。
When we engage in important tasks, it is crucial to maintain focus and concentrate. For example, while driving, a lack of focus could not only lead to traffic accidents, but also result in personal injury and property damage. Similarly, doctors must remain focused while performing surgeries, as any distraction could cause serious medical errors and unnecessary harm. Furthermore, in the realm of learning, students who cannot concentrate while studying may miss important concepts and negatively impact their learning outcomes.
This study takes online learner behavior detection as an example, using the built-in camera of a computer to capture the students' behavior during class, and detecting common inattentive behaviors in the classroom. The study proposes using face detection to determine whether students are sitting in their seats in the image, and judging whether students are maintaining focus through head posture and eye gaze. In addition, yawn detection is used to confirm the students' fatigue level. Furthermore, scene detection is applied to the computer screen of students during class to automatically identify course segments and explore whether students are focused on class.
The experimental data for this study was sourced from actual online course learning videos recorded with the assistance of six graduate students from our university. The experiment aimed to validate various behavior detection methods and overall feasibility. The results indicated that the system achieved an accuracy of 88% in detecting focused learning behavior. This demonstrates that our research method is effective in detecting attentiveness and inattentiveness among online learners. As a result, we will further investigate individual participants and specific courses to gain deeper insights.
[1] Anderson K. and McOwan P.W., "A real-time automated system for the recognition of human facial expressions, " Systems, Man and Cybernetics, Part B, IEEE Transactions on, vol. 36, pp. 96-105, 2006.
[2] Brunelli, R., & Poggio, T., "Face Recognition: Features versus Templates, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 1042- 1052, 1993.
[3] Chen, C. M., Yang, S. M., & Yu, C. M., "Assessing the Attention Levels of Students by Using a Novel Attention Aware System based on Brainwave Signals, " In 2015 International Congress on Advanced Applied Informatics, pp. 379-384, 2015.
[4] Delina, B., Shariman, O., Bazilah, A., Amalia, M., Nur, A., & Abu, T., "Fusion of face recognition and facial expression detection for authentication: a proposed model, " the 11th International Conference on Ubiquitous Information Management and Communication, 2017.
[5] Dlib.net. (2018). dlib C++ Library. [online] Available at: http://dlib.net/.
[6] Ekman, P., & Friesen, W. V., "Facial Action Coding System: A Technique for the Measurement of Facial Movement, " Palo Alto: Consulting Psychologists Press, 1978.
[7] Fei Zuo, de With, P.H.N, "Real-time Embedded Face Recognition for Smart Home, " Consumer Electronics, IEEE Transactions on, pp.183-190, 2005.
[8] Giganti, F., Zilli, I., Aboudan, P., & Salzarulo, P., "Sleep, Sleepiness and Yawning, " Frontiers of Neurology and Neuroscience, pp. 42-46, 2010.
[9] Ivan, G., Artsiom, A., Yury, K., Karthik, R., & Matthias, G., "Attention Mesh: High-fidelity Face Mesh Prediction in Real-time, " CVPR Workshop on Computer Vision for Augmented and Virtual Reality, pp. 1-4, 2020.
[10] Janez, Z., & Andrej, K., "Predicting Students’ Attention in The Classroom from Kinect Facial and Body Features, " EURASIP Journal on Image and Video Processing, pp. 1-12, 2017.
[11] King, D. E., "Dlib-ml: A Machine Learning Toolkit, " Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.
[12] LeCun Y., Bottou, L., Bengio, Y., Haffner, P., "GradientBased Learning Applied to Document Recognition, " Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.
[13] Li-Nein Chu., "A Novel Partitioned Gradient Fisherface Algorithm for Robust Face Recognition, " National Tsing Hua University, Computer science, thesis, 2004.
[14] Liu, N. H., Chiang, C. Y., & Chu, H. C., "Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors, " Sensors, vol. 13, pp. 10273-10286, 2013.
[15] Martin, A., & Robert, C., "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, " Communications of the ACM, vol. 24, pp. 381-395, 1981.
[16] Mirko, R., & Pierre, D., "System for Assessing Classroom Attention, " Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp. 265-269, 2013.
[17] Nebauer C., "Evaluation of convolutional neural networks for visual recognition, " Neural Networks, IEEE Transactions on, vol. 9, pp. 685-696, 1998.
[18] Rosalind, W., "Affective Computing, " TR-321, MIT, Media Laboratory, 1995.
[19] Tereza, S., & Jan, C., "Real-Time Eye Blink Detection using Facial Landmarks, " 21st Computer Vision Winter Workshop, pp. 1-8, 2016.
[20] Walusinski, O., "Popular Knowledge and Beliefs, " Front Neurol Neurosci. Basel, Karger, vol. 28, pp. 22-25, 2010.
[21] Xizhou, Z., Yuwen, X., Jifeng, D., Lu, Y., & Yichen, W., "Deep Feature Flow for Video Recognition, " Conference on Computer Vision and Pattern Recognition, pp. 2349-2358, 2017.
[22] Yury, K., Artsiom, A., Ivan, G. & Matthias, G., "Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs, " CVPR Workshop on Computer Vision for Augmented and Virtual Reality, pp. 1-4, 2019.
[23] 林群益,《混合機器學習與梯度統計之駕駛人瞌睡與行為即時偵測》,碩士論文,國立中興大學電機工程學系所,2017年。https://hdl.handle.net/11296/2m5qqn。
[24] 陳文賢,《應用於遠距教學之學習專注程度偵測研究》,碩士論文,國立臺灣師範大學資訊工程研究所,2020年。https://hdl.handle.net/11296/358mtc。
[25] 葉士毅,《遠距教學環境中學生學習行為即時診斷之研究》,碩士論文,國立暨南國際大學資訊管理研究所,1998年。https://hdl.handle.net/11296/ywku6m。
[26] 廖聖傑,《從學習歷程檔案建構決策樹以支援網路教學》,碩士論文,國立中山大學資訊管理研究所,2002年。https://hdl.handle.net/11296/ywku6m。
[27] 鄭昭明,《認知心理學》,2006年。