簡易檢索 / 詳目顯示

研究生: 楊瑀婕
Yang, Yu-Chieh
論文名稱: 腳底壓力辨識系統對於受測者在不同負重支撐點與重量之分析與研究
Study of Plantar-Pressure Recognition Systems for Carrying Different Weights at Different Support Points
指導教授: 林均翰
Lin, Chun-Han
口試委員: 修丕承
Hsiu, Pi-Cheng
賀耀華
Ho, Yao-Hua
林均翰
Lin, Chun-Han
口試日期: 2021/09/28
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 39
中文關鍵詞: 腳底壓力辨識系統機器學習特徵提取生物辨識
英文關鍵詞: Foot pressure recognition system, Machine Learning, Feature extraction, Biometrics
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101527
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著物聯網應用的興起,網絡通訊不只侷限在手機與電腦間,除了帶來人類生活的便利外,資訊安全的議題也逐漸被重視,因而延伸出具唯一性的生物識別技術,生物辨識的簽名認證有別於傳統的文字或圖像式的帳號與密碼,其不易被偽造的特性也使得安全程度變得更為可靠。在過去的腳底壓力分析的研究中,比較少有提及與探討受測者在身體不同位置處攜帶負重,對於受測者攜帶不同重量的負重的研究也較無著墨。本論文主要在於探討受測者在赤腳情況下於,右側攜帶不同重量的負重與後側攜帶不同重量的負重對於搭配機器學習的腳底壓力感測技術的辨識度和模型訓練時間的影響的分析與研究。實驗結果顯示使用平均腳底壓力資料與攜帶大負重量會提升腳底壓力的辨識率。

    In recent years, with the rise of Internet of Things applications, network communication is not limited to mobile phones and computers. In addition to bringing convenience to human life, the issue of information security has gradually been paid attention to. Therefore, a unique biometric technology is extended. Biometric signature authentication is different from traditional text or image-based account numbers and passwords. Its feature that not easy to be forged also makes the degree of security more reliable. In the past research on the analysis of foot pressure, few studies dis-cussed that subjects carried weights at different positions of the body. There are also few studies in research of subjects with carrying different weights. This thesis is mainly to explore the impact of the plantar-pressure recognition systems’ accuracy and the model training time for the subjects who carry different weights on the right side or the back side under barefoot conditions with machine learning methods analysis the subjects which carrying different weights on the right side and the subjects which carrying different weights on the back under barefoot conditions. The experimental results show that using average gait's data and carrying heavy weights will in-crease the recognition rate of gait's pressure.

    第一章 緒論 1 第二章 相關文獻探討 3 第一節 腳底壓力辨識方法的現況研究 4 第二節 研究議題 4 第三章 方法設計 6 第一節 資料接收與處理 7 第二節 提取特徵的選擇 7 3.2.1 原始壓力數值與圖像 7 3.2.2 平均壓力數值與圖像 9 3.2.3 腳長與腳寬 9 3.2.4 前後段壓力最大值的距離(前後段 COF 距離) 11 3.2.5 不分段壓力最大值(不分段 COF) 13 3.2.6 不分段壓力最大值的位置(不分段 COF 位置) 13 3.2.7 重心位置 13 第三節 資料儲存 15 第四節 機器學習 16 3.4.1 卷積神經網路(CNN) 16 3.4.2 支持向量機(SVM) 16 3.4.3 隨機森林(RF) 17 3.4.4 梯度提升(GB) 17 3.4.5 堆疊法(Stacking) 17 第四章 效能評估 19 第一節 實驗設定 19 4.1.1 硬體與設備 19 4.1.2 變數設定 21 4.1.3 數據記錄與設定 21 4.1.4 感測器的校準 22 第二節 不同負重位置和不同負重量下腳底特徵對系統辨識率與訓練時間的關係 23 4.2.1 數據資料 23 4.2.2 不同負重位置和不同負重量下腳底特徵與辨識率和訓練時間的關係 23 4.2.3 不同負重位置和不同負重量下腳底特徵與訓練時間 24 4.2.4 機器學習與辨識率和訓練時間的關係 27 4.2.5 集成學習演算法應用於腳底壓力資料的觀察 27 4.2.6 與其他論文之系統辨識率的比較 28 第三節 不同負重位置和相同負重量下腳底特徵對系統辨識率的關係 29 4.3.1 數據資料 29 4.3.2 2 負重量和不同負重位置與系統辨識率 29 4.3.3 4 負重量和不同負重位置與系統辨識率 31 第四節 相同負重位置與不同負重量下腳底特徵對系統辨識率的關係 32 4.4.1 單邊和不同負重量與系統辨識率 32 4.4.2 雙邊和不同負重量與系統辨識率 34 第五章 結論和未來展望 37 參考文獻 38

    [1]. K.-H. Yeh, C. Su, W. Chiu, and L. Zhou, "I walk, therefore i am: continuous user authentication with plantar biometrics," IEEE Communications Magazine, vol. 56, no. 2, pp. 150-157, 2018.
    [2]. H. Wang, S. Chen, and J. Liu, "Measuring system of a 3D force platform for plantar pressure distribution," in 2009 IEEE International Conference on Automation and Logistics, 2009, pp. 906-910.
    [3]. J. Wang, H. Huang, X. Li, and Y. Ao, "Application of the fuzzy C-means clustering algorithm in plantar pressure analysis," in 2016 Chinese Control and Decision Conference (CCDC), 2016, pp. 2089-2094.
    [4]. B. Saggin, D. Scaccabarozzi, and M. Tarabini, "Metrological performances of a plantar pressure measurement system," IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 4, pp. 766-776, 2013.
    [5]. S. Karia, S. Parasuraman, M. A. Khan, I. Elamvazuthi, N. Debnath, and S. S. A. Ali, "Plantar pressure distribution and gait stability: Normal VS high heel," in 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), 2016, pp. 1-5.
    [6]. M. S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, and M. Liwickit, "Transforming sensor data to the image domain for deep learning—An application to footstep detection," in 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 2665-2672.
    [7]. B. Zhou, M. S. Singh, S. Doda, M. Yildirim, J. Cheng, and P. Lukowicz, "The carpet knows: Identifying people in a smart environment from a single step," in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017, pp. 527-532.
    [8]. T. K. Agrawal, S. Thomassey, C. Cochrane, G. Lemort, and V. Koncar, "Low-cost intelligent carpet system for footstep detection," IEEE Sensors Journal, vol. 17, no. 13, pp. 4239-4247, 2017.
    [9]. Y. Feng, Y. Ge, and Q. Song, "A human identification method based on dynamic plantar pressure distribution," in 2011 IEEE International Conference on Information and Automation, 2011, pp. 329-332.
    [10]. N. Hegde, E. Melanson, and E. Sazonov, "Development of a real time activity monitoring Android application utilizing SmartStep," in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 1886-1889.
    [11]. G.-M. Jeong, P. H. Truong, and S.-I. Choi, "Classification of three types of walking activities regarding stairs using plantar pressure sensors," IEEE Sensors Journal, vol. 17, no. 9, pp. 2638-2639, 2017.
    [12]. R. Lvping, L. Deyu, L. Chengrui, Y. Yang, Q. Yajun, Y. Songyan, P. Fang, and N. Haijun, "Design of in-shoe plantar pressure monitoring system for daily activity exercise stress assessment," in 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, vol. 3, pp. 1367-1370.
    [13]. K. Kanitthika and K. S. Chan, "Pressure sensor positions on insole used for walking analysis," in The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), 2014, pp. 1-2.
    [14]. A. M. Cristiani, G. M. Bertolotti, E. Marenzi, and S. Ramat, "An instrumented insole for long term monitoring movement, comfort, and ergonomics," IEEE Sensors Journal, vol. 14, no. 5, pp. 1564-1572, 2014.
    [15]. H. K. Park, H. Yi, and W. Lee, "Recording and sharing non-visible information on body movement while skateboarding," in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 2488-2492.
    [16]. M. Heydarzadeh, J. Birjandtalab, M. B. Pouyan, M. Nourani, and S. Ostadabbas, "Gaits analysis using pressure image for subject identification," in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2017, pp. 333-336.
    [17]. M. Muñoz-Organero, J. Parker, L. Powell, R. Davies, and S. Mawson, "Sensor optimization in smart insoles for post-stroke gait asymmetries using total variation and L 1 distances," IEEE Sensors Journal, vol. 17, no. 10, pp. 3142-3151, 2017.
    [18]. L. Wafai, A. Zayegh, R. Begg, and J. Woulfe, "Asymmetry detection during pathological gait using a plantar pressure sensing system," in 2013 7th IEEE GCC Conference and Exhibition (GCC), 2013, pp. 182-187.
    [19]. F. Mattar, H. A. Qudaimat, B. Al Qaroot, and M. Al Yaman, "Low cost foot plantar-pressure scanning pad," in 2016 3rd Middle East Conference on Biomedical Engineering (MECBME), 2016, pp. 20-24.
    [20]. A. H. Abdul Razak, A. Zayegh, R. K. Begg, and Y. Wahab, "Foot plantar pressure measurement system: A review," Sensors, vol. 12, no. 7, pp. 9884-9912, 2012.
    [21]. 陳建翰, "腳底壓力辨識系統結合機器學習之分析與研究," 臺灣師範大學資訊工程學系學位論文, pp. 1-28, 2019.
    [22]. [Manual] FLEXIFORCE™ SENSORS USER MANUAL Rev K, Tekscan, pp.1-13, 2017.
    [23]. 褚子雯, "不同负重深蹲练习髋膝踝关节力量的理论计算与变化特征分析," 武汉体育学院, 2020.

    無法下載圖示 電子全文延後公開
    2026/10/13
    QR CODE