研究生: |
翁雪芳 WENG,Xue Fang |
---|---|
論文名稱: |
以科學新聞發展國中生的科學解釋實務 UsingScience News to Develop Ninth Grade Students' Explaining Practices |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 197 |
中文關鍵詞: | REC教學模式 、品質判準 、科學解釋 、科學新聞 、混合研究 |
英文關鍵詞: | REC Teaching Model, Quality criterion, Scientific explanation, Science News, Mixed research embedded design |
論文種類: | 學術論文 |
相關次數: | 點閱:206 下載:53 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科學解釋實務是K-12教室中八大科學實務重要的一環。發展國中生的科學解釋實務有助於培養他們未來生活所應具備的能力,提供國中生面對科學新聞的學習機會,可能有益於增進他們社會參與所應擁有的素養。故本研究設計一個以「改編的」科學新聞為教材的「辨識(Recognize)-評價(Evaluate)-建構(Construct)」教學模式(簡稱REC教學模式),讓學生進行科學解釋的辨識、評價與建構,藉以發展學生科學解釋的相關實務。
本研究採用混合研究法中的嵌入式設計,參與者是來自新北市某所國中的50位九年級國中學生,以科學解釋評量作為前後測,將科學新聞搭配教學活動製作成學習單,探討REC教學前後,學生科學解釋實務的發展與轉變。本研究並蒐集學生國文科與自然科學業成就,以預測科學解釋實務的後測表現。此外,挑選17位焦點學生進行前後訪談,欲了解科學解釋中評價標準對於科學新聞的品質判準之影響。
由研究結果可知,科學解釋的辨識、評價與建構實務在經過教學後皆有所進步,而由學生作答的分析,也同樣發現學生科學解釋實務的增長,並往正確辨識、使用評價標準及高程度品質的科學解釋之趨勢移動。而國文科學業成就對於科學解釋三項實務具有預測力,但自然科學業成就則無。科學解釋實務之發展受到情境與成分的影響,推理是最難學習的成分,主張則是最容易學習的成分;而科學新聞情境較為複雜,因而較難以學習。然而由量化與質性結果發現學生能夠將評價標準應用至科學新聞的品質判準上,顯示只要學生對於科學解釋實務的理解足夠時,便可能在跨情境的情形下進行科學解釋的實務。
綜合上述結果,REC教學模式確實能有效協助國中學生發展科學解釋的實務,亦能使學生將評價標準應用至科學新聞中。結果亦顯示科學解釋實務與語文學業成就的密切關係。期望本研究的教學設計與研究結果,能提供教學者與研究者一個設計之參考。
Constructing scientific explanations and understanding science news are important parts of scientific literacy. This study thus designed a teaching model -Recognize, Evaluate, Construct (referred as the REC Model) to develop an instructional unit, and used adapted science news as materials to develop students' practices of scientific explanation.
Fifty ninth graders participated in this study and multiple sources of data were collected including the pre- and post-tests of explaining practices and students’ science and Chinese language achievement tests in order to find out the variables that affected students’ performances in explanation post-test. 17 students were interviewed to examine whether and how they applied the evaluation criteria of scientific explanations to evaluate the quality of science news.
The results showed that students’ practices of scientific explanation significantly improved after the instructional unit; students were more able to accurately identify explanations and apply the evaluation criteria to evaluate explanations. Additionally, students’ Chinese language achievement had predictive power on students’ post-test, but their science achievement did not. Finally, after the instructional unit, students could apply the evaluation criteria to different contexts, including using the criteria to evaluate the quality of science news.
Together, the results suggest variables that affected students’ performances on constructing, evaluating, and identifying science explanations. Also, this study indicates that REC Teaching Model indeed effectively supported students’ development of explaining practices. The results provide insight into the design of effective instruction and the development of science practices.
一、 中文部份
王保進(2006)。英文視窗版SPSS與行為科學研究(第三版)。台北市:心理出版社。
吳百興、張耀云、吳心楷(2010)。科學探究活動中的科學推理。科學教育研究與發展季刊,56,53-74。
吳佳蓮(2005)。科學探究活動中國小五年級學童科學解釋能力及認識論之研究. 臺灣師範大學科學教育研究所碩士論文,未出版,台北市。
吳明隆(2010)。SPSS操作與應用-問卷統計分析實務(第二版)。台北市:五南。
吳明隆、涂金堂(2009)。SPSS與統計應用分析(第二版)。台北市:五南。
林正弘(2007)。伽利略•波柏•科學説明。台北市:東大出版社。
林嘉玫、張廣怡、鄭佳瑜、鄭芳芳(譯)(2010)。最新跨世紀新聞學(原作者:J. Lanson & B. C. Fought)。臺北縣永和市:韋伯文化。(原著出版年:2006)
洪煌堯(2011)。紮根理論研究法在數位學習研究上的應用。宋曜廷編,數位學習研究方法。台北市:高等教育出版社。
袁之琦、游恆山(1991)。心理學名詞辭典。台北市:五南。
教育部編(2002)。媒體素養教育政策白皮書。台北市:教育部。
陸健體(1994)。關於世界的問答-科學說明。台北市:淑馨出版社。
黃俊儒(2005)。融入科學新聞於自然類通識課程教學之研究。南華通識教育研究,2(2),59-83。
黃俊儒(2006)。以科學新聞讀寫為基礎之通識課程設計初探-科學、新聞與生活課程為例。南華通識教育研究,3(1),67-88。
黃俊儒(2008)。構思科技社會中的即時學習:以學生及專家對於科學新聞文本之理解差異為例。科學教育學刊,16(1),105-124。
黃俊儒(2010)。科學、新聞與生活。通識教育與跨域研究,9,63-74。
黃俊儒、簡妙如(2006)。科學新聞文本的論述層次及結構分佈:構思另個科學傳播的起點。新聞學研究,(86),135-170。
黃榮村(2002)。媒體素養教育政策白皮書:教育部長序文。台北市:教育部。
蔡佩穎、張惠博、林雅慧、張文華(2010)。小組立場、小組組成及文本特性對於學生論證生殖遺傳新聞之效應。科學教育學刊,18(3),253。
謝州恩(2004)。探究情境中國小學童科學解釋能力成長之研究。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北市。
謝瀛春(1994)。科學與大眾媒介。台北市:遠流。
簡錦鳳(2007 )。文字鷹架對七年級學生科學解釋能力的影響。臺灣師範大學科學教育研究所在職進修碩士班學位論文,未出版,台北市。
二、 西文部份
Aikenhead, G. S. (2005). Science-based occupations and the science curriculum: Concepts of evidence. Science Education, 89(2), 242-275.
Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. doi: 10.1080/095006900412284
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation:Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793.
Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. doi: 10.1002/sce.20286
Caracelli, V. J., & Greene, J. C. (1997). Crafting mixed-method evaluation designs. New Directions for Evaluation, 1997(74), 19-32. doi: 10.1002/ev.1069
Cavagnetto, A. R. (2010). Argument to foster scientific literacy. Review of Educational Research, 80(3), 336-371.
Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109-138.
Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches. Thousand Oaks, CA: Sage.
DeBoer, G. E. (1991). A history of ideas in science education: Implications for practice. New York: Teachers College.
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601.
Dimopoulos, K., & Koulaidis, V. (2002). The socio-epistemic constitution of science and technology in the Greek press: an analysis of its presentation. Public Understanding of Science, 11(3), 225-241. doi: 10.1088/0963-6625/11/3/302
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72. doi: 10.1080/03057260208560187
Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
Erickson, F. (1998). Qualitative research methods for science education. In B. J. Fraser & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 1155-1173). Dordrecht, The Netherlands: Kluwer.
Glaser, R. E., & Carson, K. M. (2005). Chemistry is in the news: Taxonomy of authentic news media-based learning activities. International Journal of Science Education, 27(9), 1083-1098.
Gott, R., & Duggan, S. (1996). Practical work: Its role in the understanding of evidence in science. International Journal of Science Education, 18(7), 791-806. doi: 10.1080/0950069960180705
Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135-175.
Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687. doi: 10.1002/tea.1025
Jarman, R., & McClune, B. (2002). A survey of the use of newspapers in science instruction by secondary teachers in Northern Ireland. International Journal of Science Education, 24(10), 997-1020.
Kachan, M. R., Guilbert, S. M., & Bisanz, G. L. (2006). Do teachers ask students to read news in secondary science?: Evidence from the Canadian context. Science Education, 90(3), 496-521.
Kolstø, S. D. (2001). 'To trust or not to trust,…'-pupils' ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877-901. doi: 10.1080/09500690010016102
Korpan, C. A., Bisanz, G. L., Bisanz, J., & Henderson, J. M. (1997). Assessing literacy in science: Evaluation of scientific news briefs. Science Education, 81(5), 515-532.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3-4), 313-350. doi: 10.1080/10508406.1998.9672057
Krajcik, J., & Czerniak, C. M. (2007). Teaching science in elementary and middle school: A project-based approach. New York: Routledge.
Kuhn, D. (1991). The skills of argument. Cambridge, England: Cambridge University Press.
Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129. doi: 10.1207/s15327647jcd0101n_11
Kuhn, L., & Reiser, B. (2005). Students constructing and defending evidence-based scientific explanations. In annual meeting of the National Association for Research in Science Teaching, Dallas, TX (pp.1-35).
Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94.
Ender, C. K., & Bandalos, D. L. (1999). The effects of heterogeneous item distributions on reliability. Applied Measurement in Education, 12, 133-150.
Lee, M. H., Wu, Y. T., & Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999-2020. doi: 10.1080/09500690802314876
McClune, B., & Jarman, R. (2011). From aspiration to action: A learning intentions model to promote critical engagement with science in the print-based media. Research in Science Education., 41, 691-710. doi: 10.1007/s11165-010-9186-1
McNeill, K. L. (2008). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268.
McNeill, K. L. (2011). Elementary students' views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823.
McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53-78. doi: 10.1002/tea.20201
McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. The Journal of the Learning Sciences, 18(3), 416-460.
McNeill, K. L., & Krajcik, J. (2012). Supporting grade 5-8 students in constructing explanations in science: The claim, evidence, and reasoning framework for talk and writing. New York, NY: Peason Allyn & Bacon.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153-191.
Moje, E. B., Peek-Brown, D., Sutherland, L. M., Marx, R. W., Blumenfeld, P., & Krajcik, J. (2004). Explaining explanations: Developing scientific literacy in middle-school project-based science reforms. In D. S. Strickland & D. E. Alvermann (Eds.), Bridging the gap: Improving literacy learning for preadolescent and adolescent learners in grades 4–12. (pp. 227-251). NY: Teachers Colledge Press.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students' assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 1-34.
Norris, S. P., Phillips, L. M., & Korpan, C. A. (2003). University students' interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12, 123-145.
Ohlsson, S. (1992). The cognitive skill of theory articulation: A neglected aspect of science education? Science & Education, 1(2), 181-192. doi: 10.1007/bf00572838
Organisation for Economic Co-operation and Development. (2010). PISA 2009 Assessment Framework: Key Competencies in Reading, Mathematics and Science. OECD Publishing.
Osborne, J., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627-638.
Pallrand, G. J. (1996). The relationship of assessment to knowledge development in science education. Phi Delta Kappan, 78(4), 315-318.
Programme for International Student Assessment. (2003). The PISA 2003 assessment framework mathematics, reading, science and problem solving knowledge and skills. OECD Publishing.
Ratcliffe, M. (1999). Evaluation of abilities in interpreting media reports of scientific research. International Journal of Science Education, 21(10), 1085-1099.
Reiser, B. J., Krajcik, J., Moje, E., & Marx, R. (2003, March). Design strategies for developing science instructional materials. In annual meeting of the National Association for Research in Science Teaching, Philadelphia, PA .
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. doi: 10.1002/tea.20009
Salmon, W. C. (1989). Four decades of scientific explanation. Minneapolis: the University of Minnesota Press.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 5-51. doi: 10.1207/s15327809jls1201_2
Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. doi: 10.1002/sce.20065
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55.
Sandoval, W. A., & Reiser, B. J. (1997, March). Evolving explanations in high school biology. In Annual Meeting of the American Educational Research Association (pp. 24-28).
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102-119. doi: 10.1037/0012-1649.32.1.102
Strauss, A., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage.
Sutherland, L. M., McNeill, K. L., Krajcik, J. S., & Colson, K. (2006). Supporting middle school students in deceloping scientific explanations. In R. R. Douglas, M. Klentschy, & K. Worth (Ed.), Linking science & literacy in the K-8 classroom (pp. 163-181). Washington, DC: National Science Teachers Association
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn and Bacon.
Toulmin, S. (1985). The uses of argument. Cambridge, England: Cambridge University Press.
Tytler, R. (2001). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 23(8), 815-832. doi: 10.1080/09500690010016058
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. doi: 10.1207/s1532690xci1601_2
Wu, H. K., & Hsieh, C.-E. (2006). Developing sixth graders' inquiry skills to construct explanations in inquiry-based learning environments. International Journal of Science Education, 28(11), 1289-1313.