簡易檢索 / 詳目顯示

研究生: 林柏宇
論文名稱: 氧氣還原在過渡金屬表面之反應趨勢
The trends of oxygen reduction reaction (ORR) on transition-metal surfaces
指導教授: 王禎翰
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 168
中文關鍵詞: 循環伏安法一氧化碳氧化線性掃描伏安法氧氣還原反應
英文關鍵詞: Cyclic Voltammetry, Carbon Monoxide Oxidation, Linear Sweep Voltammetry, Oxygen Reduction Reaction
論文種類: 學術論文
相關次數: 點閱:196下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用還原劑(NaBH4)還原十種不同金屬錯合物成金屬Co、Ni、Cu(第三周期)、Ru、Rh、Pd、Ag(第四周期)和Ir、Pt、Au(第五周期),並吸附在Vulcan XC-72上,進一步在樣品上嘗試Ag金屬重量比例不同(80%)和利用實驗方式改變Au、Ag金屬顆粒大小,藉由XRD、SEM、EDS、TEM儀器確認金屬吸附狀況。將RDE玻碳電極滴上不同金屬的Vulcan XC-72樣品在酸性( H2SO4 )及鹼性( KOH )溶液條件下,使用電化學循環伏安法( CV ) 、一氧化碳氧化及線性掃描伏安法( LSV ),測試不同金屬的電化學上的特性,並討論氧氣還原反應( ORR )的差異。
    藉由電化學結果可整理出5個結論:(1)Pt相較於其他金屬有利氧氣還原反應(ORR)。 (2)推測Pt、Pd等金屬在鹼性條件下為4個電子反應;Au可能包含2個和4個電子反應;Cu、Ni因活性不佳與碳黑為2個電子反應。(3)Au、Ag顆粒變小也使得氧氣還原活性提升。(4)Ag金屬重量比提升相對也增加氧氣還原活性,但不符合經濟效應。

    In the current research, a series of catalysts of 3d( Co、Ni、Cu ), 4d( Ru、Rh、Pd、Ag ), 5d( Ir、Pt、Au ) supported on Vulcan XC-72 carbon have been systematically investigated by electrochemical measurement to investigate their catalytic trends for oxygen reduction reaction ( ORR ). The samples were initially prepared by NaBH4 reduction method and characterized from XRD, SEM, EDS, TEM to examine their chemical compositions and microstructures. The electrochemical active surfaces ( EAS ) of the fabricated carbon-supported metals were then determined by CO oxidation method. The ORR performance and mechanism were investigated by rotating disc electrode ( RDE ) method in both acidic ( H2SO4 ) and basic ( KOH ) conditions-with various rotating speeds. In addition, effects of metal sizes and loading for the electrochemical performance were also examined.
    The ex-situ characterization of the synthesized catalysts shows that all the metals are uniformly distributed on the carbon supporter with desired loadings, c.a. 20% and similar sizes, c.a. 8 nm, indicating that the electrochemical behavior for those catalysts are mainly controlled by chemical identies of metals. Electrochemical studies of them conclude the following results. First, Pt is most activity metal for ORR and followed by Pd, Au, and etc. Second, Pt, Pd, Rh, Ir, Ru, Ag, Co promoted predominately a four-electron pathway for ORR, while Au includes both two and four-electron pathways. Nevertheless, Cu and Ni are the poorest activity for ORR, behave similar to the carbon supportor shows two-electron pathway for ORR. Finally, metal size have significant effect on electrochemical performance as the small sized Au and Ag, ~3 nm, boost better ORR activity; on the other hand, metal loading shows limit influence in ORR.

    中文摘要 2 英文摘要 3 致謝 5 目錄 6 圖表目錄 10 第一章 理論基礎與文獻回顧 17 1.0緒論 17 1.1燃料電池 17 1.1.1燃料電池發展 17 1.1.2燃料電池種類 18 1.2質子交換膜燃料電池( PEMFC ) 22 1.3陰極材料討論 24 1.3.1陰極氧氣還原反應 24 1.3.2氧氣還原的文獻實驗與理論計算 32 1.4研究動機與目的 38 第二章 實驗設備與方法 39 2.1實驗藥品及器材 39 2.1.1實驗藥品 39 2.1.2實驗用氣體 40 2.1.3實驗器材 41 2.2儀器介紹 42 2.2.1 X光繞射儀 ( X-ray diffraction;XRD ) 42 2.2.2掃綿是電子顯微鏡 ( Scanning Electron Microscope;SEM ) 43 2.2.3能量散射光譜儀 ( Energy Dispersive Spectrometer;EDS ) 44 2.2.4穿透式電子顯微鏡 ( Transmission electron microscopy;TEM )45 2.2.5電化學循環伏安法 45 2.3實驗方法 49 2.3.1樣品製備 49 2.3.2電化學特性測試 51 2.3.3電極漿料製備 53 2.3.4循環伏安 53 2.3.5氧氣還原線性掃描伏安 53 2.3.6一氧化碳氧化 54 第三章 結果與討論 56 3.1結構與特性分析 56 3.1.1 XRD分析 56 3.1.2 TEM分析 59 3.1.3 SEM、EDS分析 63 3.2電化學特性 71 3.2.1循環伏安分析 ( CV ) 71 3.2.2線性掃描伏安分析 ( LSV ) 87 3.2.3氧氣還原反應分析 96 3.2.4樣品活性分析 106 第四章 結論 111 第五章 未來展望 111 附錄:DFT理論計算 113 S1-1 DFT理論計算介紹 113 S1-2 Gaussian basis 117 S1-3 Gaussina input介紹 119 S2 甲醇在鍺(100)表面上的反應機制理論計算 121 S2-1 前言 121 S2-2 實驗動機與方向 121 S2-3 計算模型 122 S2-4 計算條件設置 123 S2-5結果與討論 124 S2-6結論 130 S3 Tetrasubstituted Furans 經由Intramolecular Wittig Reaction的反應選擇性理論計算 139 S3-1前言 139 S3-2實驗動機與方向 139 S3-3計算模型與條件設置 140 S3-4計算結果與討論 142 S3-5結論 148 參考文獻 162

    1. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.;Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., Nature 1999, 399, 429.
    2. Grove, W.R., Phil. Mag. Ser 1839, 3, 127.
    3. http://www.azocleantech.com/article.aspx?ArticleID=70.
    4. Slade, R.C.T., Varcoe, J. R., Solid State Ionics 2005, 176, 585.
    5. Varcoe, J.R., Slade, R. C. T., Fuel Cells 2005, 5,187.
    6. Bard, F.L., New York: Wiley, 1980.
    7. Ernest Y., J. Mol. Catal 1986, 38, 5.
    8. Hamann, C.H., A. Hammnett, W. Vielstich, Wiley-VCH, Weinheim, 1998.
    9. Tarasevich, M.R., A. Sadkowski, E. Yeager, Oxygen Electrochemistry 1983, 301.
    10. Fischer, P., Heitbaum, J., J. Electroanal. Chem. 1980, 112, 231.
    11. Adzic, R., Wiley-VCH, 1998, 197.
    12. Vogel, W.M., Electrochim. Acta 1968, 13, 1821.
    13. F. H. B. Lima, J.Z., M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli,R. R. Adzic, J. Phys. Chem. C 2007, 111, 404.
    14. N. Anastasijevic, Z.M.D.a.R.R.A., Electrochim. Acta 1992, 37, 457.
    15. Sepa, D.B., Vojnovic, M. V., Damjanovic, A., Electrochim. Acta 1980, 25, 1491.
    16. Yeager, E., Razaq, M., Gervasio, D., Razaq, A., Tryk, D. Proc., Electrochem. Soc. 1992, 92, 440.
    17. A. Damjanovic, M.A.G., J. O’M Bockris, J. Chem. Phys. 1966, 45, 4057.
    18. H. S. Wroblowa, Y.-C.P., G. Razumney., J. Electroanal. Chem. 1976, 69, 195.
    19. N. A. Anastasijevi´c, V.V.c., R. R. Adˇzi´c., J. Electroanal. Chem. 1987, 229, 305.
    20. Bard, A.J., J. Am.Chem.Soc. 2010, 132, 7559.
    21. B. B. Blizanac, P.N.R., N. M. Markovic, Electrochim. Acta 2007, 52, 2264.
    22. E. Janin, H.V.S., M. G¨othelid, U. O. Karlsson, M. Svensson, Phys. Rev. B 2000, 61, 13144.
    23. Adzic, R., J. Lipkowski, P. N. Ross, Electrochemistry 1998, 197.
    24. G. Jerkiewicz, G.V., J. Lessard, M. P. Soriaga, Y. S.Park, Electrochim. Acta 2004, 49, 1451.
    25. Ross, N.M.M.ı.a.P.N., Surf. Sci. Rep. 2002, 45, 117.
    26. JP., H., New York: Wiley, 1968.
    27. F. H. B. Lima, J.Z., M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli, R. R. Adzic, J. Phys. Chem. C 2007, 111, 404.
    28. Fischer, P.H., J., J. Electroanal. Chem. 1980, 112, 231.
    29. J. Moreira , P.d.A., A.L. Ocampo , P.J. Sebasti0an, J.A. Montoya ,R.H. Castellanos, Int. J. Hydrogen Energy 2004, 29, 915.
    30. Han, J., Li, N., Zhang, T., J. Power Sources 2009, 193, 885.
    31. Yifu Yang, Y.Z., J. Electroanal. Chem. 1995, 397, 271.
    32. Lima, F.H.B.S., C.; Ticianelli, E., J. Electrochem. Soc. 2005, 152, A1466.
    33. Demarconnay, L.C., C.; Leger, J. M., Electrochim. Acta 2004, 49, 4513.
    34. Coutanceau, C., Demarconnay, L., Lamy, C., Leger, J. M., J. Power Sources 2006, 156, 14.
    35. Junsong Guo, A.H., Deryn Chu, Rongrong Chen, J. Phys. Chem. C 2010, 114, 4314.
    36. Norskov JK, R.J., Logadotir A, Lindqvist L, Kitchin JR, Bligaard T, J. Phys. Chem. B 2004,108, 17886.
    37. T. Bligaard, J.K.N., S. Dahl , J. Matthiesen , C. H. Chistensen , J. Schested, J. Catal. 2004, 224, 206.
    38. J. Greeley, J.R., A. Hellman, J. K. Norskov, Z. Phys. Chem. 2007, 221, 1209.
    39. Xuguang Li, G.L., Branko N. Popov, J. Power Sources 2010, 195, 6373.
    40. Ivar Kruusenberg , L.M., Hua Jiang , Maija Huuppola ,Kyösti Kontturi , Kaido Tammeveski, Electrochem. Comm. 2010, 12, 920.
    41. Jun Maruyama, Ikuo A., J. Electroanal. Chem. 2002, 527, 65.
    42. http://www.chem.ccu.edu.tw/~hu/elements/.
    43. 彭文權,"以沉積法製備甲醇燃料電池用之Pt-Ru 雙金屬觸媒".1997
    44. Tran, T.d., and Langer, S.H., Anal. Chem.1993, 65, 1805.
    45. Markovic, N.M., Grgur, B.N.,Lucas, C.A., Ross, P.N., J. Phys. Chem. B 1999, 103, 487.
    46. A. Pozio, M.D.F., A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 2002, 105, 13.
    47. 陈滢, 唐., 高颖,刘长鹏,邢巍,陆天虹, Chinese J. App. Chem. 2009, 26, 985.
    48. K. Tammeveski, M.A., T. Tenno, C. Ferrater, J.Claret, Eelctrochim. Acta.1997, 42, 2961.
    49. N.M. Markovic, H.A.G., P.N. Ross Jr., J. Phys.Chem. 1996, 100, 6715.
    50. Junsong Guo, A.H., Deryn Chu, Rongrong Chen, J. Phys. Chem. C 2010, 114, 4324
    51. E.R. Savinova, P.K., B. Pettinger, K. Doblhofer,, J. Electroanal.Chem. 1997, 430, 47.
    52. Daniel A. Slanac, W.G.H., Keith P. Johnston, Keith J. Stevenson, J. Am. Chem. Soc.2012, 134, 9812.
    53. Rodriguez , J.M.F., Marc T.M. Koper, Electrochem. Commun. 2009, 11, 1105.
    54. Takeshi Inasaki, S.u.K., Electrochim. Acta 2009, 54, 4893.
    55. Hara, M., U. Linke, T. Wandlowski, Electrochim. Acta 2007, 52, 5733.
    56. Li Xiao, L.Z., Yi Liu, Juntao Lu, He´ctor D. Abrun˜a, J. Am. Chem. Soc. 2009, 131, 602.
    57. M. Hara, U.L., Th. Wandlowski., Electrochim. Acta 2007, 52, 5733.
    58. N. Danilovic, R.S., D. Strmcnik ,A. P. Paulikas , D. Myers , V. R. Stamenkovic ,N. M. Markovic, Electrocatal 2012, 3, 221.
    59. Tobias Reier, M.O., Peter Strasser, Catalysis 2012, 2, 1765.
    60. Wasberg, M.H.n., G., J. Electroanal. Chem. 1995, 385, 63.
    61. Lam, A.L., H.; Zhang, S.; Wang, H.; Wilkinson, D. P.; Wessel,S.; Cheng, T. T. H., J. Power Sources 2012, 205, 235.
    62. Nesselberger, M.A., Sean Meier, Josef C. Katsounaros, Ioannis Mayrhofer, Karl J. J. Arenz, Matthias, J. Am.Chem.Soc. 2011, 133, 17428.
    63. Roberto GoÂmez, M.J.W., Langmuir 1998, 14, 2525.
    64. Juodkazytė, J., Vilkauskaitė, R., Stalnionis, G., Šebeka, B., Juodkazis, K., Electroanalysis 2007, 19, 1093.
    65. Trasatti, S., J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163.
    66. Hubert Gasteiger, N.M., Philip N. Ross, Jr., Elton J. Cairns , J. Phys. Chem. 1994, 98, 617.
    67. Fereydoon Gobal, Electrocatal. 2011, 2, 42.
    68. Peuckert, M., Surf. Sci. 1984,141, 500.
    69. G. Jerkiewicz, J.J.B., Langmuir 1993, 9, 2202.
    70. S.-L. Yau, Y.-G.K., K. Itaya, J. Am. Chem. Soc. 1996, 229, 7795.
    71. Y.E. Sung, S.T., A. Wieckowski, J. Phys. Chem. 1995, 99, 13513.
    72. P. Elumalai, H.N.V., N. Munichandraiah, J. Power Sources 2001, 93, 201.
    73. M.A. Abdel Rahim, R.M.A.H., M.W. Khalil, J. Power Sources 2004, 134, 160.
    74. H. Helia, M.J., M.G. Mahjania, F. Gobalb, Electrochim. Acta 2004, 49, 4999.
    75. C.H. Pyun, S.M.P., J. Electrochem. Soc. 1986, 132, 2024.
    76. S.M. Abd El Haleem, B.G.A., J. Electroanal. Chem. 1981, 117, 309.
    77. A.M. Shams El Din, F.M.A.E.W., Electrochim. Acta 1964, 9, 113.
    78. L.D. Burke, M.J.G.A., T.G. Ryan, J. Electrochem. Soc.1990, 137, 553.
    79. Ioannis Katsounaros, W.B.S., Josef C. Meier, Udo Benedikt, P. Ulrich Biedermann, Angel Cuesta, Alexander A. Aue ,Karl J. J. Mayrhofer, Phys. Chem. Chem. Phys. 2013, 15, 8058.
    80. Nadezda Alexeyeva, T.L., Kyo¨sti Kontturi, Fakhradin Mirkhalaf,David J. Schiffrin, Kaido Tammeveski, Electrochem. Commun.2006, 8, 1475.
    81. R.Z. Jiang, F.C.A., J. Electroanal. Chem. 1991, 305, 171.
    82. R. Ditchfield, W.J.H., J. A. Pople, J. Chem. Phys. 1971, 54, 724.
    83. T. H. Dunning Jr., P.J.H., Ed. H. F. Schaefer III, 1976, 3, 1.
    84. Buriak, J.M., Chem. Rev. 2002, 102, 1271.
    85. Lim, C.W., Soon, J. M., Ma, N. L., Chen, W., Loh, K. P., Surf. Sci. 2005, 575, 51.
    86. Bae, S.-S.K., D. H.; Kim, A.; Jung, S. J.; Hong, S.; Kim, S., J. Phys. Chem. C 2007, 111, 15013.
    87. Kim, D.H., Bae, S.-S., Hong, S., Kim, S., Surf. Sci. 2010, 604, 129.
    88. B. HAMMER, J.K.N., Advances In Catalysis 2000, 45, 71.
    89. Howlett, D.R., Rerry,A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J., Markell, R. E., Biochem. J., 1999, 340, 283.
    90. Yudin, A.K., Afagh, N.A., Angew. Chem. Int. 2010, 49, 262.

    下載圖示
    QR CODE