研究生: |
蔡宜蓉 Tsai, Yi-Jung |
---|---|
論文名稱: |
微生物細胞表面顯示系統及 合成多樣化金屬奈米粒子的開發與應用 Development and Application of Cell Surface Display and Biosynthesis of Diverse Metal Nanoparticles by Microorganisms |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 細胞表面顯示 、青枯桿菌 、大腸桿菌 、奈米粒子 、根瘤菌 、黑色素 |
英文關鍵詞: | cell-surface display, Ralstonia eutrpha, Escherichia coli, nanoparticles, Rhizobium etli, melanin |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微生物細胞表面顯示(Microbial cell-surface display),即利用暴露在細
胞表面的蛋白質作為載體蛋白(carrier protein) , 將乘客蛋白或胜肽
(passenger protein/peptide)顯示在細胞表面的技術。因此,載體蛋白能夠有效並成功地將乘客蛋白顯示於細胞表面是極為重要的。本實驗藉由來自
Escherichia coli 的outer membrane iron transporter protein (FhuA) 作為載體蛋白,發展一個可以使用於不同菌種及顯示不同的異源性乘客蛋白/胜肽的細胞表面顯示平台,同時比較來自E. coli,截短的outer membrane protein(OmpA),以及來自Neisseria gonorrhoeae 的 immunoglobulin A protease(IgA protease)作為載體蛋白,將乘客胜肽顯示於一革蘭氏陰性菌,Ralstonia eutrpha 之表面。透過實驗分析,三種載體蛋白無論於E. coli或R. eutropha中,皆成功易位於細胞外膜,並將不同的乘客胜肽顯示於細胞表面,而乘客胜肽之功能依舊,表示此使用E. coli,FhuA 作為載體蛋白之策略適合顯示異源性胜肽在細胞表面的生物工程應用。
在自然界中,許多微生物本身就具有在細胞內或細胞外合成金屬奈米粒子的特性。由於生物性的合成方法具有無毒並對環境友好性的特質。因此,利用微生物作為合成金屬奈米粒子反應器已廣泛的被研究,除了使用本身具有合成金屬奈米粒子特性的微生物外,也有許多利用重組菌株的方式以合成更多樣化的金屬奈米粒子。Rhizobium etli,是一種固氮菌,其所含的melA 基因序列被證實為tyrosinase 的基因序列,且被使用於重組E.coli 並藉由外加的L-DOPA 產生黑色素。本實驗藉由帶有melA 基因片段的重組E. coli,表現tyrosinase 並催化L-DOPA,產生出黑色素並合成多種的金屬奈米粒子。
Microbial cell-surface display allows the passenger protein/peptide to be displayed on the surface of microbial cells by fusing them with the carrier protein. Therefore, it’s important that carrier proteins display passenger
proteins/peptides efficiently and successfully on the cell surface. In this study, a system for the display of heterologous passenger proteins/peptides on the surface of different strain was developed using the Escherichia coli outer membrane iron transporter protein (FhuA) as a carrier protein. Simultaneously, a truncated outer membrane protein A (OmpA) from E. coli and a immunoglobulin A protease (IgA protease) from Neisseria gonorrhoeaen were compared in a Gram-negative bacteria, Ralstonia eutropha. Through the
experimental analysis, the three carrier proteins and different passenger peptides are located and displayed on the cell surface in both E. coli and R.eutropha. These results suggest that the strategy employing the E. coli FhuA as a carrier protein is suitable for the display of heterologous peptides on the cell surface for biotechnical applications.
In nature, microorganisms are capable of reducing the metal ions to form metal nanoparticles intracellularly or extracellularly. Biosynthesis of metal
nanoparticles has been studied extensively because of their unique properties
such as non-toxicity and environmental friendly. The protein encoded melA by
the nitrogen-fixing bacterium, Rhizobium etli, is a tyrosinase. It has been shown
that recombinant E. coli produced melanin with melA gene from R. etli. In the
present study, we demonstrate that the melanin biosynthesis pathway in R. etli
can be exploited for the in vivo synthesis of metal nanoparticles with the
inexpensive L-DOPA using recombinant E. coli.
1. Kotrba, P.; Rulíšek, L.; Ruml, T., Bacterial Surface Display Surface
display of Metal-Binding Sites. 2011, 249-283.
2. Lee, S. Y.; Choi, J. H.; Xu, Z., Microbial cell-surface display. Trends in
biotechnology 2003, 21 (1), 45-52.
3. Schröfel, A.; Kratošová, G., Biosynthesis of Metallic Nanoparticles and
Their Applications. 2011, 5, 373-409.
4. Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M. A.;
Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; Martinez-Criado, G.;
George, G. N.; Nies, D. H.; Mergeay, M.; Pring, A.; Southam, G.; Brugger, J.,
Mechanisms of gold biomineralization in the bacterium Cupriavidus
metallidurans. Proceedings of the National Academy of Sciences of the United
States of America 2009, 106 (42), 17757-62.
5. Pimprikar, P. S.; Joshi, S. S.; Kumar, A. R.; Zinjarde, S. S.; Kulkarni, S. K.,
Influence of biomass and gold salt concentration on nanoparticle synthesis by
the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and
Surfaces B: Biointerfaces 2009, 74 (1), 309-316.
6. Johnston, C. W.; Wyatt, M. A.; Li, X.; Ibrahim, A.; Shuster, J.; Southam,
G.; Magarvey, N. A., Gold biomineralization by a metallophore from a
gold-associated microbe. Nature chemical biology 2013, 9 (4), 241-3.
7. Malhotra, A.; Dolma, K.; Kaur, N.; Rathore, Y. S.; Ashish; Mayilraj, S.;
Choudhury, A. R., Biosynthesis of gold and silver nanoparticles using a novel
marine strain of Stenotrophomonas. Bioresource technology 2013, 142, 727-31.
8. Valls, M.; Atrian, S.; de Lorenzo, V.; Fernández, L. A., Engineering a
mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for
immobilization of heavy metals in soil. Nat Biotech 2000, 18 (6), 661-665.
9. Wei, W.; Zhu, T.; Wang, Y.; Yang, H.; Hao, Z.; Chen, P. R.; Zhao, J.,
Engineering a gold-specific regulon for cell-based visual detection and
recovery of gold. Chemical Science 2012, 3 (6), 1780.
10. Soma, Y.; Inokuma, K.; Tanaka, T.; Ogino, C.; Kondo, A.; Okamoto, M.;
Hanai, T., Direct isopropanol production from cellobiose by engineered
Escherichia coli using a synthetic pathway and a cell surface display system.
Journal of Bioscience and Bioengineering 2012, 114 (1), 80-85.
11. Park, T. J.; Heo, N. S.; Yim, S. S.; Park, J. H.; Jeong, K. J.; Lee, S. Y.,
Surface display of recombinant proteins on Escherichia coli by BclA
exosporium of Bacillus anthracis. Microbial cell factories 2013, 12, 81.
12. Kang, S. H.; Bozhilov, K. N.; Myung, N. V.; Mulchandani, A.; Chen, W.,
47
Microbial Synthesis of CdS Nanocrystals in Genetically EngineeredE. coli.
Angewandte Chemie 2008, 120 (28), 5264-5267.
13. Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S., In vivo synthesis of diverse
metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie
2010, 49 (39), 7019-24.
14. Niide, T.; Goto, M.; Kamiya, N., Biocatalytic synthesis of gold
nanoparticles with cofactor regeneration in recombinant Escherichia coli cells.
Chemical communications 2011, 47 (26), 7350-2.
15. van Bloois, E.; Winter, R. T.; Kolmar, H.; Fraaije, M. W., Decorating
microbes: surface display of proteins on Escherichia coli. Trends in
biotechnology 2011, 29 (2), 79-86.
16. Verhoeven, G. S.; Alexeeva, S.; Dogterom, M.; Blaauwen, T. d.,
Differential Bacterial Surface Display of Peptides by the Transmembrane
Domain of OmpA. PLoS ONE 2009, 4 (8), e6739.
17. Pohlner, J.; Halter, R.; Beyreuther, K.; Meyer, T. F., Gene structure and
extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987,
325 (6103), 458-462.
18. Jose, J., Autodisplay: efficient bacterial surface display of recombinant
proteins. Applied microbiology and biotechnology 2006, 69 (6), 607-14.
19. Yeh, Y. C.; Muller, J.; Bi, C.; Hillson, N. J.; Beller, H. R.; Chhabra, S. R.;
Singer, S. W., Functionalizing bacterial cell surfaces with a phage protein.
Chemical communications 2013, 49 (9), 910-2.
20. Apte, M.; Girme, G.; Nair, R.; Bankar, A.; Ravi Kumar, A.; Zinjarde, S.,
Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica.
Materials Letters 2013, 95 (0), 149-152.
21. Apte, M.; Girme, G.; Bankar, A.; RaviKumar, A.; Zinjarde, S., 3,
4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica
mediates the synthesis of silver and gold nanostructures. Journal of
Nanobiotechnology 2013, 11 (1), 2.
22. Fairhead, M.; Thony-Meyer, L., Bacterial tyrosinases: old enzymes with
new relevance to biotechnology. New biotechnology 2012, 29 (2), 183-91.
23. Cabrera-Valladares, N.; Martínez, A.; Piñero, S.; Lagunas-Muñoz, V. H.;
Tinoco, R.; de Anda, R.; Vázquez-Duhalt, R.; Bolívar, F.; Gosset, G.,
Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli
and characterization of the encoded tyrosinase. Enzyme and Microbial
Technology 2006, 38 (6), 772-779.
24. Seker, U. O. S.; Demir, H. V., Material Binding Peptides for
Nanotechnology. Molecules 2011, 16 (2), 1426-1451.
48
25. Chiu, C.-Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C. B.; Huang, Y., Platinum
nanocrystals selectively shaped using facet-specific peptide sequences. Nat
Chem 2011, 3 (5), 393-399.
26. Taner, M.; Sayar, N.; Yulug, I. G.; Suzer, S., Synthesis, characterization
and antibacterial investigation of silver–copper nanoalloys. Journal of
Materials Chemistry 2011, 21 (35), 13150.