簡易檢索 / 詳目顯示

研究生: 蔡宜蓉
Tsai, Yi-Jung
論文名稱: 微生物細胞表面顯示系統及 合成多樣化金屬奈米粒子的開發與應用
Development and Application of Cell Surface Display and Biosynthesis of Diverse Metal Nanoparticles by Microorganisms
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 48
中文關鍵詞: 細胞表面顯示青枯桿菌大腸桿菌奈米粒子根瘤菌黑色素
英文關鍵詞: cell-surface display, Ralstonia eutrpha, Escherichia coli, nanoparticles, Rhizobium etli, melanin
論文種類: 學術論文
相關次數: 點閱:217下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微生物細胞表面顯示(Microbial cell-surface display),即利用暴露在細
    胞表面的蛋白質作為載體蛋白(carrier protein) , 將乘客蛋白或胜肽
    (passenger protein/peptide)顯示在細胞表面的技術。因此,載體蛋白能夠有效並成功地將乘客蛋白顯示於細胞表面是極為重要的。本實驗藉由來自
    Escherichia coli 的outer membrane iron transporter protein (FhuA) 作為載體蛋白,發展一個可以使用於不同菌種及顯示不同的異源性乘客蛋白/胜肽的細胞表面顯示平台,同時比較來自E. coli,截短的outer membrane protein(OmpA),以及來自Neisseria gonorrhoeae 的 immunoglobulin A protease(IgA protease)作為載體蛋白,將乘客胜肽顯示於一革蘭氏陰性菌,Ralstonia eutrpha 之表面。透過實驗分析,三種載體蛋白無論於E. coli或R. eutropha中,皆成功易位於細胞外膜,並將不同的乘客胜肽顯示於細胞表面,而乘客胜肽之功能依舊,表示此使用E. coli,FhuA 作為載體蛋白之策略適合顯示異源性胜肽在細胞表面的生物工程應用。
    在自然界中,許多微生物本身就具有在細胞內或細胞外合成金屬奈米粒子的特性。由於生物性的合成方法具有無毒並對環境友好性的特質。因此,利用微生物作為合成金屬奈米粒子反應器已廣泛的被研究,除了使用本身具有合成金屬奈米粒子特性的微生物外,也有許多利用重組菌株的方式以合成更多樣化的金屬奈米粒子。Rhizobium etli,是一種固氮菌,其所含的melA 基因序列被證實為tyrosinase 的基因序列,且被使用於重組E.coli 並藉由外加的L-DOPA 產生黑色素。本實驗藉由帶有melA 基因片段的重組E. coli,表現tyrosinase 並催化L-DOPA,產生出黑色素並合成多種的金屬奈米粒子。

    Microbial cell-surface display allows the passenger protein/peptide to be displayed on the surface of microbial cells by fusing them with the carrier protein. Therefore, it’s important that carrier proteins display passenger
    proteins/peptides efficiently and successfully on the cell surface. In this study, a system for the display of heterologous passenger proteins/peptides on the surface of different strain was developed using the Escherichia coli outer membrane iron transporter protein (FhuA) as a carrier protein. Simultaneously, a truncated outer membrane protein A (OmpA) from E. coli and a immunoglobulin A protease (IgA protease) from Neisseria gonorrhoeaen were compared in a Gram-negative bacteria, Ralstonia eutropha. Through the
    experimental analysis, the three carrier proteins and different passenger peptides are located and displayed on the cell surface in both E. coli and R.eutropha. These results suggest that the strategy employing the E. coli FhuA as a carrier protein is suitable for the display of heterologous peptides on the cell surface for biotechnical applications.
    In nature, microorganisms are capable of reducing the metal ions to form metal nanoparticles intracellularly or extracellularly. Biosynthesis of metal
    nanoparticles has been studied extensively because of their unique properties
    such as non-toxicity and environmental friendly. The protein encoded melA by
    the nitrogen-fixing bacterium, Rhizobium etli, is a tyrosinase. It has been shown
    that recombinant E. coli produced melanin with melA gene from R. etli. In the
    present study, we demonstrate that the melanin biosynthesis pathway in R. etli
    can be exploited for the in vivo synthesis of metal nanoparticles with the
    inexpensive L-DOPA using recombinant E. coli.

    摘要 ...................................................................................................................... I Abstract ............................................................................................................... II 謝誌 .................................................................................................................... IV 目錄 ..................................................................................................................... V 圖目錄 ................................................................................................................ VII 表目錄 ................................................................................................................. XI 第一章 緒論 ........................................................................................................ 1 1.1 微生物細胞表面顯示 (Microbial cell-surface display) ................... 1 1.2 生物合成法製備金屬奈米粒子 .......................................................... 3 1.3 文獻回顧 .............................................................................................. 4 1.3.1 微生物表面顯示發展與應用之相關文獻 ...................................... 4 1.3.2 生物合成金屬奈米粒子之相關文獻 ............................................. 6 1.4 研究動機與目的 .................................................................................. 9 1.4.1 微生物細胞表面顯示系統之開發與應用 ...................................... 9 1.4.2 利用微生物合成多樣化金屬奈米粒子 ........................................ 12 第二章 研究結果與討論 ..................................................................................... 13 2.1 微生物細胞表面顯示系統之發展及應用 ........................................ 13 2.1.1 細菌表面顯示系統之建立 ........................................................... 13 2.1.2 分析gold-binding peptide 顯示於R. eutropha 表面之成效 ........ 16 2.1.3 利用FhuA-passenger 系統顯示不同的胜肽 .............................. 19 2.2 利用微生物合成多樣化金屬奈米粒子與應用 ................................. 20 VI 2.2.1 藉由Rhizobium etli 生成之黑色素合成Au 奈米粒子 ................ 20 2.2.2 利用重組大腸桿菌合成不同的金屬奈米粒子 ............................. 21 2.2.3 調控金屬奈米粒子之大小 ........................................................... 26 2.2.4 金屬奈米粒子之應用 .................................................................. 27 2.2.5 顯示重組E. coli 合成之Au 奈米粒子於細胞表面 ...................... 28 第三章 結論 ....................................................................................................... 30 實驗方法與材料 .................................................................................................. 31 微生物表面顯示系統之發展與應用 ....................................................... 31 利用微生物合成多樣化金屬奈米粒子與應用 ....................................... 33 參考文獻 ............................................................................................................. 46

    1. Kotrba, P.; Rulíšek, L.; Ruml, T., Bacterial Surface Display Surface
    display of Metal-Binding Sites. 2011, 249-283.
    2. Lee, S. Y.; Choi, J. H.; Xu, Z., Microbial cell-surface display. Trends in
    biotechnology 2003, 21 (1), 45-52.
    3. Schröfel, A.; Kratošová, G., Biosynthesis of Metallic Nanoparticles and
    Their Applications. 2011, 5, 373-409.
    4. Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M. A.;
    Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; Martinez-Criado, G.;
    George, G. N.; Nies, D. H.; Mergeay, M.; Pring, A.; Southam, G.; Brugger, J.,
    Mechanisms of gold biomineralization in the bacterium Cupriavidus
    metallidurans. Proceedings of the National Academy of Sciences of the United
    States of America 2009, 106 (42), 17757-62.
    5. Pimprikar, P. S.; Joshi, S. S.; Kumar, A. R.; Zinjarde, S. S.; Kulkarni, S. K.,
    Influence of biomass and gold salt concentration on nanoparticle synthesis by
    the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and
    Surfaces B: Biointerfaces 2009, 74 (1), 309-316.
    6. Johnston, C. W.; Wyatt, M. A.; Li, X.; Ibrahim, A.; Shuster, J.; Southam,
    G.; Magarvey, N. A., Gold biomineralization by a metallophore from a
    gold-associated microbe. Nature chemical biology 2013, 9 (4), 241-3.
    7. Malhotra, A.; Dolma, K.; Kaur, N.; Rathore, Y. S.; Ashish; Mayilraj, S.;
    Choudhury, A. R., Biosynthesis of gold and silver nanoparticles using a novel
    marine strain of Stenotrophomonas. Bioresource technology 2013, 142, 727-31.
    8. Valls, M.; Atrian, S.; de Lorenzo, V.; Fernández, L. A., Engineering a
    mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for
    immobilization of heavy metals in soil. Nat Biotech 2000, 18 (6), 661-665.
    9. Wei, W.; Zhu, T.; Wang, Y.; Yang, H.; Hao, Z.; Chen, P. R.; Zhao, J.,
    Engineering a gold-specific regulon for cell-based visual detection and
    recovery of gold. Chemical Science 2012, 3 (6), 1780.
    10. Soma, Y.; Inokuma, K.; Tanaka, T.; Ogino, C.; Kondo, A.; Okamoto, M.;
    Hanai, T., Direct isopropanol production from cellobiose by engineered
    Escherichia coli using a synthetic pathway and a cell surface display system.
    Journal of Bioscience and Bioengineering 2012, 114 (1), 80-85.
    11. Park, T. J.; Heo, N. S.; Yim, S. S.; Park, J. H.; Jeong, K. J.; Lee, S. Y.,
    Surface display of recombinant proteins on Escherichia coli by BclA
    exosporium of Bacillus anthracis. Microbial cell factories 2013, 12, 81.
    12. Kang, S. H.; Bozhilov, K. N.; Myung, N. V.; Mulchandani, A.; Chen, W.,
    47
    Microbial Synthesis of CdS Nanocrystals in Genetically EngineeredE. coli.
    Angewandte Chemie 2008, 120 (28), 5264-5267.
    13. Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S., In vivo synthesis of diverse
    metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie
    2010, 49 (39), 7019-24.
    14. Niide, T.; Goto, M.; Kamiya, N., Biocatalytic synthesis of gold
    nanoparticles with cofactor regeneration in recombinant Escherichia coli cells.
    Chemical communications 2011, 47 (26), 7350-2.
    15. van Bloois, E.; Winter, R. T.; Kolmar, H.; Fraaije, M. W., Decorating
    microbes: surface display of proteins on Escherichia coli. Trends in
    biotechnology 2011, 29 (2), 79-86.
    16. Verhoeven, G. S.; Alexeeva, S.; Dogterom, M.; Blaauwen, T. d.,
    Differential Bacterial Surface Display of Peptides by the Transmembrane
    Domain of OmpA. PLoS ONE 2009, 4 (8), e6739.
    17. Pohlner, J.; Halter, R.; Beyreuther, K.; Meyer, T. F., Gene structure and
    extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987,
    325 (6103), 458-462.
    18. Jose, J., Autodisplay: efficient bacterial surface display of recombinant
    proteins. Applied microbiology and biotechnology 2006, 69 (6), 607-14.
    19. Yeh, Y. C.; Muller, J.; Bi, C.; Hillson, N. J.; Beller, H. R.; Chhabra, S. R.;
    Singer, S. W., Functionalizing bacterial cell surfaces with a phage protein.
    Chemical communications 2013, 49 (9), 910-2.
    20. Apte, M.; Girme, G.; Nair, R.; Bankar, A.; Ravi Kumar, A.; Zinjarde, S.,
    Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica.
    Materials Letters 2013, 95 (0), 149-152.
    21. Apte, M.; Girme, G.; Bankar, A.; RaviKumar, A.; Zinjarde, S., 3,
    4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica
    mediates the synthesis of silver and gold nanostructures. Journal of
    Nanobiotechnology 2013, 11 (1), 2.
    22. Fairhead, M.; Thony-Meyer, L., Bacterial tyrosinases: old enzymes with
    new relevance to biotechnology. New biotechnology 2012, 29 (2), 183-91.
    23. Cabrera-Valladares, N.; Martínez, A.; Piñero, S.; Lagunas-Muñoz, V. H.;
    Tinoco, R.; de Anda, R.; Vázquez-Duhalt, R.; Bolívar, F.; Gosset, G.,
    Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli
    and characterization of the encoded tyrosinase. Enzyme and Microbial
    Technology 2006, 38 (6), 772-779.
    24. Seker, U. O. S.; Demir, H. V., Material Binding Peptides for
    Nanotechnology. Molecules 2011, 16 (2), 1426-1451.
    48
    25. Chiu, C.-Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C. B.; Huang, Y., Platinum
    nanocrystals selectively shaped using facet-specific peptide sequences. Nat
    Chem 2011, 3 (5), 393-399.
    26. Taner, M.; Sayar, N.; Yulug, I. G.; Suzer, S., Synthesis, characterization
    and antibacterial investigation of silver–copper nanoalloys. Journal of
    Materials Chemistry 2011, 21 (35), 13150.

    下載圖示
    QR CODE