簡易檢索 / 詳目顯示

研究生: 黃嘉瑋
論文名稱: 利用PZT之形變控制鎳薄膜磁彈性異向能
Modification of magnetoelastic anisotropy in strain controllable Ni thin films on mica substrate attached to PZT
指導教授: 林文欽
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 39
中文關鍵詞: 鋯鈦酸鉛PZT磁致伸縮磁電效應
英文關鍵詞: Lead zirconate titanate, Magnetostriction, Magnetoelectric Effect
DOI URL: https://doi.org/10.6345/NTNU202202825
論文種類: 學術論文
相關次數: 點閱:147下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用壓電材料PZT通電壓後造成的形變,進而扯動黏在上層的磁性薄膜,藉由此機制觀察磁性薄膜的磁性行為。壓電材料PZT加上磁性薄膜的組合稱為人工多鐵性(Artificial Multiferroic),即自組裝鐵磁性材料和鐵電性材料,因為要在一塊材料中同時存在鐵磁性和鐵電性並不容易達成,所以我們可以藉由此方法得到想要的結果。
    我們發現將Pd/Ni/Pd三層膜鍍在雲母片上,再將此樣品黏於2 mm厚的PZT,通入電壓後可以得到有序且有趣的磁性變化,我們也發現對電場和矯頑力(Coercivity)作圖,在小場附近(0 V/mm到15 V/mm附近)會有不連續的現象,且最後回到0 V/mm時和原來的Coercivity會不一致,從文獻中得知鎳薄膜的磁矩從水平異向性翻轉到垂直異向性所需要的能量為0.16 MJm^-3。同時我們也使用應變計(Strain Gauge)測量PZT的形變,以及PZT傳遞到雲母片上的應力,分別是0.507‰及0.465‰,由此我們可以得知整塊PZT形變與電場的關係,且PZT在被極化後的形狀和未極化前不一樣,但遵守體積守恆定律。
    利用X光繞射分析儀(X-Ray Diffraction)分析薄膜的晶格結構,再和幾篇文獻對照,得知我們所使用的鋯鈦酸鉛為PZT(111),成長的薄膜為Pd(111)和Ni(111),另外,我們也鍍了鐵和鈷兩種不同的磁性薄膜在壓電銅片-蜂鳴器上,做了一系列有趣的量測,雖然並沒有發現磁性行為的改變,但我們對其形變有初步的了解。
    關鍵字:鋯鈦酸鉛PZT、磁致伸縮、磁電效應

    Multiferroics has attracted much attention in the last decade due to its potential of application. However, the intrinsic coupling between multiferroic phases in single material is hard to achieved at room temperature. Alternatively, in this study, we chose an "artificial" multiferroic material called magnetoelectric (ME) composite to investigate the voltage-assisted ME coupling by combining piezoelectric Pb(Zr,Ti)O3 (PZT) material and magnetostrictive Ni layers. When a voltage applied on PZT, the ME response results from the electric field-induced strain transferring from PZT to Ni and cause the change of magnetism. The magnetic coercivity Hc of the sample Pd/Ni/Pd/Mica/PZT(2 mm) with respect to applied electric field is non-linear in the range between 0 and 15 V/mm. However, we obtained some regular changes of the magnetic behavior in high voltage range. When the voltage turned off to 0 V, Hc is not recovered to the initial value. We determine the strain of PZT and mica are 0.507‰ and 0.465‰ by strain gauge, respectively. X-ray diffractometer (XRD) pattern shows that crystal planes of PZT, Pd and Ni are in [111] direction. Furthermore, we also studied the ME effect in (Fe, Co)/Buzzer system, the Hc doesn't change by certain deformation of buzzer.
    Key words:Lead zirconate titanate, PZT, Magnetostriction, Magnetoelectric Effect

    1 前言與動機...............................................1 2 基本原理與概念............................................6 2.1 壓電效應(Piezoelectric Effect).........................6 2.2 人工多鐵性(Artificial Multiferroic)....................7 2.3 磁致伸縮(Magnetostriction) 與磁彈性(Magnetoelastic).....8 2.4 壓電銅片-蜂鳴器.........................................8 2.5 壓電材料-PZT...........................................9 2.6 雲母片(Mica)..........................................11 2.7 聚醯亞胺薄膜(Kapton-PI film)..........................11 3 實驗儀器................................................12 3.1 超高真空鍍膜系統(UHV Deposition System)................12 3.2 磁光柯爾效應系統(MOKE System)..........................13 3.3 應變計(Strain Gauge)..................................15 3.4 X光繞射分析儀(XRD)....................................16 3.5 穿透式電子顯微鏡(TEM)..................................17 4 實驗與結果..............................................18 4.1 磁性行為量測(MOKE)....................................18 4.1.1 壓電銅片-蜂鳴器......................................18 4.1.2 Pd/Ni/Pd/Mica/PZT..................................20 4.1.3 Pd/Ni/Pd/Kapton/PZT................................23 4.1.4 Pd/Ni/Pd/PZT.......................................24 4.2 X光繞射分析(XRD)......................................24 4.2.1 Pd/Ni/Pd/Mica/PZT..................................24 4.3 TEM 量測..............................................26 4.4 形變測量與分析.........................................30 4.4.1 PZT(2 mm)..........................................30 4.4.2 PZT(0.2 mm)........................................32 4.4.3 Pd/Ni/Pd/Mica/PZT..................................33 5 結果與討論..............................................35 6 結論....................................................37 參考文獻..................................................38

    [1] J. M. Barandiarán, J. Gutiérrez, and A. García-Arribas. Magneto-elasticity in amorphous ferromagnets: Basic principles and applications. physica status solidi (a), 208(10):2258–2264, Oct 2011.
    [2] M. Buzzi, R. V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Physical Review Letters, 111(2), Jul 2013.
    [3] Maneesh Chandran, Brajesh Tiwari, C R Kumaran, Sunil K Samji, S S Bhattacharya, and M S Ramachandra Rao. Integration of perovskite pzt thin films on diamond substrate without buffer layer. J. Phys. D: Appl. Phys., 45(20):202001, May 2012.
    [4] Tien-Kan Chung, Gregory P. Carman, and Kotekar P. Mohanchandra. Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl. Phys. Lett., 92(11):112509, 2008.
    [5] Tien-Kan Chung, Scott Keller, and Gregory P. Carman. Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Appl. Phys. Lett., 94(13):132501, 2009.
    [6] N.H. Duc and D.T. Huong Giang. Magnetic sensors based on piezoelectricmagnetostrictive composites. Journal of Alloys and Compounds, 449(1-2):214–218, Jan 2008.
    [7] U. Gradmann and R. Bergholz. Magnetization of pd(111) films by contact with ferromagnetic ni(111) films. Physical Review Letters, 52(9):771–774, Feb 1984.
    [8] B. Oral. Growth mode determinations for the epitaxial cu/pd(111)/mica and pd/cu(111)/mica thin film systems. J. Vac. Sci. Technol. A, 8(3):3048, May 1990.
    [9] D Sander. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Reports on Progress in Physics, 62(5):809–858, May 1999.
    [10] D Sander, A Enders, and J Kirschner. Stress and magnetic properties of surfaces and ultrathin films. Journal of Magnetism and Magnetic Materials, 200(1-3):439 455, Oct 1999.
    [11] F. Zighem, D. Faurie, S. Mercone, M. Belmeguenai, and H. Haddadi. Voltage-induced strain control of the magnetic anisotropy in a ni thin film on flexible substrate. Journal of Applied Physics, 114(7):073902, 2013.
    [12] 曾維國. 壓電式致動器設計製作及其在霧化器與微混合器之應用. 國立成功大學工程科學研究所, 2004.
    [13] 楊振邦. 雲母含量影響砂土壓縮性之研究. 中原大學土木工程研究所, 2009.
    [14] 紀喬崧. 鈀/鐵, 鈷, 鎳/藍寶石基板(0001) 系統晶格結構與磁性研究. Master’s thesis, 國立臺灣師範大學物理研究所, 2012.
    [15] 謝東廷. 鋯鈦酸鉛壓電式微重量感測器. 國立中央大學電機工程學系碩士班, 2009.
    [16] 高育儒. 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 壓電材料的晶粒大小對晶體結構與介電性質之影響. 國立成功大學資源工程研究所, 2008.

    下載圖示
    QR CODE