研究生: |
陳世耀 Chen, Shih-Yao |
---|---|
論文名稱: |
一種用於氧化鎵微結構陣列切割的非等能量雙電阻電容放電電源研製 Development of a dual-resistance-capacitance discharge power source with non-equal energy applied to β-Ga2O3 microstructure array cutting |
指導教授: |
陳順同
Chen, Shun-Tong |
口試委員: | 趙崇禮 蔡俊毅 蘇崇彥 陳順同 |
口試日期: | 2021/08/12 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 非等能量雙電阻電容放電電源 、氧化鎵 、熱裂解 、寬能隙 |
英文關鍵詞: | Dual-resistance-capacitance discharge power source with non-equal energy, gallium oxide, pyrolysis, wide-bandgap |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101239 |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種「非等能量雙電阻電容放電電源」,並應用於氧化鎵高深寬比微細結構陣列的加工研究。氧化鎵係由氧原子與鎵原子化合而成的寬能隙半導體材料,廣用於高功率元件,具高硬度與高脆性,不易切削加工,目前多以蝕刻方式成形,但蝕刻速度慢,且不易成形高深寬比結構。寬帶隙材料可降低能耗,降低能耗不僅減少了功率損耗,且可使系統微小化,與矽的解決方案相比,降低了成本。不過,常溫狀態下,材料能隙愈大,絕緣性愈高,因此本研究以歐姆接觸原理,於氧化鎵表面製作導電電極,使其呈現微弱導電特性。因此,透由高頻火花熔蝕,將材料中的氧移除,鎵便能從材料中快速剝落,氧化鎵微結構即可被快速成形。所以本研究提出一種「非等能量雙電阻電容放電電源」的電路設計。「非等能量雙電阻電容放電電源」由「元件可程式邏輯閘陣列(FPGA)」控制放電迴路的等頻率放電時間,並以100 pF/200 pF的雙電容當迴路放電電容,以便創造出高頻、高低峰及短脈衝的放電電流波列。高峰值電流負責汽化、熔蝕及移除氧化鎵材料,低峰值電流負責移除氧化鎵的放電殘渣及熔蝕毛邊,並提供介電液將放電殘渣沖離的放電休止時間。實驗結果顯示,就放電加工而言,比較起鋁合金,氧化鎵有更高的材料移除率,主要原因為氧化鎵在放電高溫作用下,會發生熱裂解(Pyrolysis),當氧被去除後,材料會以小塊狀模式剝落,可加速材料移除。且在設計的「非等能量雙電阻電容放電電源」作用下,可成功切割出柱狀微結構陣列及片狀曲面微結構,且微細結構陣列皆能成形平滑曲面結構,槽寬與表面粗糙度值分別可達24.5 µm與Ra0.188 µm,特徵形狀具高一致性,毛邊與邊緣崩落量都很少;相較於蝕刻技術,不但速度快,更可達高深寬比,加工效率明顯提升,證實「非等能量雙電阻電容放電電源」適用於寬能隙材料的加工,期望此項技術未來能應用於光電產業。
The aim of the study is to develop a "dual-resistance-capacitance discharge power source with non-equal energy" for cutting β-Ga2O3 with high-aspect-ratio microstructure array. Gallium oxide which is made of the combination of oxygen atoms and gallium atoms is a wide band gap semiconductor material and widely used in high-power devices. It is characterized by high- hardness, brittleness and not easy to cut. At present, the etching method is mostly used for forming, however, the etching speed is slow, and it is difficult to foFrm a microstructure with high aspect ratio. The wide-bandgap materials allow reduced energy consumption. Reducing energy consumption not only reduces power loss but also makes the system miniaturized, reducing costs compared with silicon solutions. Nevertheless, the greater the energy gap of the material, the higher the insulation under normal temperature condition. An ohmic contact method, in which conductive electrodes are fabricated on the surface of gallium oxide, is carried out to make it possesses weak conductive properties. Therefore, by removing oxygen from the material by high-frequency spark ablation, gallium can be spontaneously and quickly peeled off from the matrix, and the gallium oxide microstructure can be rapidly formed. In view of this, a circuit design of "dual-resistance-capacitance discharge power source with non-equal energy" is proposed in this study. The equal frequency discharge time is controlled by the "component programmable logic gate array (FPGA)" in the power source. Experimental results found that a dual-capacitor with 100pF/200pF used can create a discharge current with high-frequency, high-low-peak and short-pulse train, which is very suitable for cutting the gallium oxide microstructure. High-peak current dominates vaporization, ablation and removal of gallium oxide material, while low-peak current is responsible for removing discharge debris and ablation burrs of gallium oxide. In addition, the pulse off-time of discharge is also designed to be adjustable so that the discharge debris has enough time to be flushed away by dielectric fluid. Experimental results show that in terms of electrical discharge machining, gallium oxide has a higher material removal rate than aluminum alloy. The main reason is that gallium oxide will undergo thermal cracking (i.e. pyrolysis). The gallium oxide will peel off in a small block pattern when oxygen is removed, thereby speeding up the removal of the material. Moreover, by applying the designed "dual-resistance-capacitance discharge power source with non-equal energy", the microstructure arrays with pillar and sheet-like curved can be successfully produced. These microstructure arrays are formed with smooth surface, the slot-widths and surface roughness can reach up to 24.5 µm and Ra0.188 µm, respectively. The microstructure features with high-consistency and low the amount of edge-burrs are realized successfully. Compared with the etching technology, it is not only faster but also achieves a microstructure with high aspect ratio, improving significantly the processing efficiency, proving that the "dual-resistance-capacitance discharge power source with non-equal energy" is suitable for cutting the materials with wide-bandgap. It is expected that this technology can be applied to optoelectronics industry in the future.
1.Serena, B., 2019. The Future of MEMS, SEMI, https://www.semi.org/zh/node/97711.
2.Shimamura, K., Víllora, E.G., Domen, K., Yui, K., Aoki, K.,Ichinose, N., 2005. Epitaxial Growth of GaN on (1 0 0) β-Ga2O3Substrates by Metalorganic Vapor Phase Epitaxy, Japanese Journal of Applied Physics 44, L7-L8.
3.Fujita, M., Baba, T., 2002. Microgear laser, Applied Physics Letters l80, 2051-2053.
4.Wang, Y., Zhao, Q., Shang, Y., Lv, P., Guo, B., Zhao, L., 2011. Ultra-precision machining of Fresnel microstructure on die steel using single crystal diamond tool, Journal of Materials Processing Technology 211, 2152-2159.
5.楊士緯,2014,高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究,國立臺灣師範大學機電工程學系。
6.張玉圓,2021,化合物半導體成科技新戰場,工業技術與資訊月刊348期,pp.47-49.
7.Casanueva, R., Chiquito, L.A., Azcondo, F.J., Bracho S., 2001. Current source LCC resonant converter for an EDM power supply,IEEE 2, 1027-1032.
8.Yan, M.T., Liu, Y.T., 2009. Design, analysis and experimental study of a high-frequency power supply for finish cut of wire-EDM, International Journal of Machine Tools and Manufacture l49, 793-796.
9.Chung, D.K., Shin, H.S., Kim B.H., Chu, C.N., 2011. High frequency micro wire EDM for electrolytic corrosion prevention, International Journal of Precision Engineering and Manufacturing 12, 1125-1128.
10.Li, Q., Bai, J., Li, C., Li, S., 2013. Research on Multi-Mode Pulse Power Supply for Array Micro Holes Machining in Micro-EDM, Procedia CIRP 6, 168-173.
11.Chen, S.T.,Chen, C.H., 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high-melting point, -hardness and -resistance materials, Journal of Materials Processing Technology 240, 370-381.
12.張智賢,2011,桌上型雙主軸超精微CNC工具機開發與細胞鏡檢模仁製作研究,國立臺灣師範大學機電工程學系。
13.Zhang, Z., Peng, H., Yan, J., 2013. Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools, International Journal of Machine Tools and Manufacture 65, 99-106.
14.連家灝,2015,智能化對稱高速雙主軸研磨機開發與LED碳化鎢探針快速研削研究,國立臺灣師範大學機電工程學系。
15.Ogawa, M., Mine, K., Fuchiyama, S., Tawa, Y., Kato, T., 2014. Development of Multi-Wire Electric Discharge Machining for SiC Wafer Processing, Materials Science Forum 778-780, 776-779.
16.Zhao, Y., Kunieda, M., Abe, K., 2016. EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects, Journal of Materials Processing Technology 236, 138-147.
17.Zhang, J., Li, B., Xia, C., Pei, G., Deng, Q., Yang, Z., Xu, W., Shi, H., Wu,F., Wu, Y., Xu, J., 2006. Growth and spectral characterization of β-Ga2O3 single crystals, Journal of Physics and Chemistry of Solids 67, 2448-2451.
18.Wellenius, P., Suresh, A., Foreman, J.V., Everitt, H.O., Muth, J.F., 2008. A visible transparent electroluminescent europium doped gallium oxide device, Materials Science and Engineering: B 146, 252-255.
19.Villora, E.G., Teherani, F.H., Look, D.C., Rogers, D.J., Arjoca, S., Shimamura, K., Inomata, D., Aoki, K., 2014. β-Ga2O3and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3potential for next generation of power devices, SPIE 8987, 89871U.
20.Yang, J., Ahn, S., Ren, F., Pearton, S.J., Jang, S., Kuramata, A., 2017. High Breakdown Voltage (−201) β -Ga2O3 Schottky Rectifiers, IEEE Electron Device Letters 38, 906-909.
21.Chen, Y.C., Lu, Y.J., Lin, C.N., Tian, Y.Z., Gao, C.J., Dong, L., Shan, C.X., 2018. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging, Journal of Materials Chemistry C 6, 5727-5732.
22.Pearton, S., Ren, F., Tadjer, M., Kim, J., 2018. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, Journal of Applied Physics 24, 220901.
23.Yonenaga, I., 2001. Thermo-mechanical stability of wide-bandgap semiconductors: high temperature hardness of SiC, AlN, GaN, ZnO and ZnSe, Physica B: Condensed Matter 308, 1150-1152.
24.Itokazu, A., Miyake, H., Hashimoto, T., Fukushima, K., 2014. Multi-Wire Electrical Discharge Slicing for Silicon Carbide Part 2: Improvement on Manufacturing Wafers by Forty-Wire EDS, Materials Science Forum 778-780, 763-766.
25.Carl, S., 2000. Non-traditional machining handbook, Advance Publishing Inc, 117-1242.
26.Egashira, K., Masuzawa, T., 1999. Microultrasonic Machining by the Application of Workpiece Vibration, CIRP Annals l48, 131-134.
27.齋藤長男、賴耿陽譯,1981,放電加工機活用,復漢出版社, pp 7-57.
28.陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學機電工程學系。
29.Lundstrom, M., 1997. Elementary scattering theory of the Si MOSFET, IEEE Electron Device Letters 18, 361-363.
30.Adel, S.S., Kenneth, C.S., Microelectronic Circuit,Oxford University,Chapter5 MOSFET’s.
31.Orabi, M., 2009. Circuit design considerations for integrated high switching frequency buck converter. In INTELEC 2009-31st International Telecommunications Energy Conference IEEE, 1-6.
32.Roy, R., Hill, V., Osborn, E., 1952. Polymorphism of Ga2O3 and the system Ga2O3—H2O, Journal of the American Chemical Society 74, 719-722.
33.Kananen, B.E., Halliburton, L.E., Stevens, K., Foundos, G., Giles, N., 2017. Gallium vacancies in β-Ga2O3 crystals, Applied Physics Letters 110, 202104.
34.Li, W., Zhang, X., Meng, R., Yan, J., Wang, J., Li, J., Wei, T., 2019. Epitaxy of III-Nitrides on β-Ga2O3 and Its Vertical Structure LEDs, Micromachines 10, 322.
35.Teherani, F.H., Look, D.C., Rogers, D.J., Víllora, E.G., Arjoca, S., Shimamura, K., Inomata, D., Aoki, K., 2014. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3potential for next generation of power devices, SPIE 8987, 89871U.
36.Ueda, N., Hosono, H., Waseda, R., Kawazoe, H., 1997. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals, Applied Physics Letters 70, 3561-3563.
37.Suzuki, N., Ohira, S., Tanaka, M., Sugawara, T., Nakajima, K., Shishido, T., 2007. Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystal, physica status solidi c, vol4, 2.
38.Irudayadass, G., Shi, J., 2018. The estimation of impact ionization coefficients for β‐Ga2O3, arXiv preprint arXiv 1806.01948, 1-7.
39.Zhang, Y., Yan, J., Zhao, G., Xie, W., 2010. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3, Physica B: Condensed Matter 405, 3899-3903.
40.Sheng, S.L., 1993, Metal-Semiconductors Contacts,ISBN 978-1-4613-0489-0, 247-286.
41.Mattox, D.M., 2000, Handbook of physical vapor deposition (PVD) processing. William Andrew, ISBN 9780815520375., 195-227
42.Cheng, H., Cheng, J., Zhang, Y., Wang, Q.M., 2007. Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition, Journal of Crystal Growth 299, 34-40.
43.Konuma, M., 1992, Film Deposition by Plasma Techniques, ISBN 978-3-642-84511-6, 126-137.
44.Quaranta, F., Valentini, A., Favia, P., Lamendola, R., Agostino, R., 1993. Ion‐beam sputtering deposition of fluoropolymer thin films, Applied physics letters 63, 10-11.
45.Frey, H., 2015. Applications and Developments of Thin Film Technology, ISBN 978-3-642-05430-3, 38-64.
46.Nikolay, N., 2017. Modern Technologies for Creating the Thin-film Systems and Coatings, ISBN 978-953-51-3003-1, 137-145
47.羅吉宗,2017,薄膜科技與應用(第五版),ISBN 9789864635306,pp 184-243.
48.台中精機股份有限公司,立式加工機Vcenter55/70,http://www.or.com.tw/。
49.慶鴻機電工業股份有限公司,線切割機CW640S1,http://www.chmer.com/
50.陳建智,2018,避熱式旋轉放電法於針尖1-μm之單晶鑽石探針高效成形研究,國立臺灣師範大學機電工程學系。
51.高敦科技股份有限公司,電子束蒸鍍系統,http://www.kaoduen.com.tw/
52.技鼎股份有限公司,快速升溫退火爐,http://www.premtek.com.tw/index.aspx
53.微型直流馬達, FAULHABER,http://www.faulhaber.com/。
54.AlteraDE0, terasIC, http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=139&Language=English&No=593。
55.直流電源供應器,台灣百科股份有限公司,http://www.bktw.com.tw/zh-tw/。
56.混合訊號示波器,Tektronix,http://www.tek.com。
57.工具顯微鏡,漢磊股份有限公司,http://www.aixon.com.tw/。
58.The Imagine Source,DMK41UA02,https://www.theimagingsource.tw
59.JEOL, Scanning Electron Microscope, JSE-6360, http://www.jeol.co.jp/en/
60.OLYMPUS,雷射共軛焦顯微鏡OLS4100,https://www.olympus.com.tw/
61.Keysight,半導體參數分析儀,https://www.keysight.com/tw/zh/home.html
62.Bebra,微細銅線(20 μm),https://www.bedra.hk/
63.維信鋁合金有限公司,鋁合金(6061T6),http://www.wsal.com.tw/ugC_ShowroomItem.asp
64.氧化鎵基板,タムラ製作所,https://www.tamura-ss.co.jp/gao
65.黃立文,2019,高頻等脈衝微放電電源開發應用於含硼聚晶鑽石陣列微結構線切割放電研究,國立臺灣師範大學機電工程學系。
66.Geller, S., 1960. Crystal structure of β‐Ga2O3, The Journal of Chemical Physics 33, 676-684.
67.Galazka, Z., Uecker, R., Irmscher, K., Albrecht, M., Klimm, D., Pietsch, M.,Brützam, M., Bertram, R., Ganschow, S., Fornari, R., 2010. Czochralski growth and characterization of β‐Ga2O3 single crystals, Crystal Research and Technology 45, 1229-1236.
68.Alexander,, C., Sadiku, M., 2012. Fundamentals of Electric Circuits, ISBN 978-0-07-338057-5, 215-251.
69.Mitchel, E.S., 1994. Electronic Devices: A Text and Software Problems Manual, ISBN 978-0071139052, 88-100.
70.VISHAY, MOSFET, http://www.vishay.com
71.Lyle, L.A., Back, T.C., Bowers, C.T., Green, A.J., Chabak, K.D., Dorsey D. L., Heller E. R. ,Porter L. M., 2021. Electrical and chemical analysis of Ti/Au contacts to β-Ga2O3, APL Materials 9, 061104.
72.Papanicolaou, N., Rao, M., Mittereder, J.,Anderson, W., 2001. Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 19, 261-267.
73.Lee, M.H., Peterson, R.L., 2019. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3, APL Materials 7, 022524.
74.Ji, R., Liu, Y., Diao, R., Xu, C., Li, X., Cai, B., Zhang, Y., 2014. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics, PloS one 9, e110775.
75.Pandeeswari, R., Jeyaprakash, B., 2014. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature, Sensors and Actuators B: Chemical 195, 206-214.
76.Zhou, W., Xia, C., Sai, Q., Zhang, H., 2017. Controlling n-type conductivity of β-Ga2O3 by Nb doping, Applied Physics Letters 111, 242103.
77.Marafona, J., Chousal, J.A.G., 2006. A finite element model of EDM based on the Joule effect, International Journal of Machine Tools and Manufacture 46, 595-602.
78.Rebelo, J., Dias, A.M., Kremer, D., Lebrun, J., 1998. Influence of EDM pulse energy on the surface integrity of martensitic steels, Journal of Materials Processing Technology 84, 90-96.
79.Shabgard, M., Oliaei, S.N.B., Seyedzavvar, M., Najadebrahimi, A., 2012. Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process, Journal of Mechanical Science and Technology 25, 3173-3183.
80.Zahiruddin, M., Kunieda, M., 2016. Analysis of Micro Fin Deformation Due to Micro EDM, Procedia CIRP 42, 569-574.
81.Nakagomi, S.,Kokubun Y., 2012. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate, Journal of Crystal Growth 349, 12-18.
82.Shao, B., Rajurkar, K.P., 2015. Modelling of the crater formation in micro-EDM, Procedia CIRP 33, 376-381
83.Huang, H.C., Kim, M., Zhan, X., Chabak, K., Kim, J.D., Kvit, A., Liu, D., Ma, Z., Zuo, J.M., Li, X., 2019. High Aspect Ratio beta-Ga2O3 Fin Arrays with Low-Interface Charge Density by Inverse Metal-Assisted Chemical Etching, ACS Nano 13, 8784-8792.
84.Chen, X., Ren, F., Gu, S.,Ye, J., 2019. Review of gallium-oxide-based solar-blind ultraviolet photodetectors, Photonics Research 7, 381.
85.Jeong, Y., Hong, C., Jung, Y. H., Akter, R., Yoon, H., Yoon, I., 2019. Enhanced Surface Properties of Light-Trapping Si Nanowires Using Synergetic Effects of Metal-Assisted and Anisotropic Chemical Etchings, Sci Rep 9, 15914.
86.Hanada, K., Moribayashi, T., Koshi, K., Sasaki, K., Kuramata, A., Ueda, O., Kasu, M., 2016. Origins of etch pits in β-Ga2O3 (010) single crystals, Japanese Journal of Applied Physics 55, 1202BG.
87.Jia, C., Jeon, D.W., Xu, J., Yi, X., Park, J.H., Zhang, Y., 2020. Catalyst-Assisted Large-Area Growth of Single-Crystal beta-Ga2O3 Nanowires on Sapphire Substrates by Metal-Organic Chemical Vapor Deposition, Nanomaterials (Basel) 10, 6.
88.Wang, S., Chen, K., Zhao, H., He, C., Wu, C., Guo, D., Zhao, N., Ungar,G., Shen, J., Chu, X., Li, P., Tang, W., 2019. β-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection, RSC Advances 9, 6064-6069.