簡易檢索 / 詳目顯示

研究生: 陳昌達
Chen, Chang-Da
論文名稱: 矽膠基氮化鋁/石墨烯複合導熱膠材之開發
Development of silicone based AlN/graphene thermally conductive greases
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 熱界面材料氮化鋁石墨烯多壁奈米碳管協同效應半熟成技術熱傳導係數
英文關鍵詞: thermal grease, alumina nitride, synergetic effect
DOI URL: https://doi.org/10.6345/NTNU202202272
論文種類: 學術論文
相關次數: 點閱:190下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來在電子產品尺寸比例不斷縮小卻仍需達到良好工作性能的趨勢下,電子產品對於散熱系統的效能要求也越來越嚴苛,可以預期散熱元件在電子資訊產品中所扮演的角色也將愈來愈重要。熱界面材料(Thermal interface materials, TIM)是目前被廣泛應用於IC封裝及電子散熱的複合材料,通常以高分子膠體基質及具有高導熱性質的陶瓷填充顆粒組成,而目前文獻或是專利,主要都透過填充顆粒表面改質技術以及於導熱膠材內部建立更強的協同效應,來改善熱界面材料的導熱特性。本研究提出大氣電漿(Atmospheric plasma, APP)表面改質技術,對填充材料進行改質,其具有低時間成本、對環境友善等優點,並且更能提升熱界面材料熱傳導係數,故具有高度應用的潛力。本研究也以傅立葉紅外光譜儀(Fourier transform infared spectrometer, FTIR)及拉曼光譜分析儀(Raman spectroscope),確認大氣電漿改質效果後,添加適當重量百分比例的奈米碳材,能與氮化鋁顆粒在導熱膠材內部建立協同效應(Synergetic effect),進而使所製備的熱界面材料能有更好的熱傳導效果。本研究添加經大氣電漿改質過後的材料,60 wt%的球型氮化鋁粉末、2 wt%的多壁奈米碳管及2 wt%的寡層石墨烯,透過行星式脫泡攪拌機(Planetary degassing mixer)與高分子膠體基質進行充分混拌,並以「半熟成技術(Semi-curing)」製作導熱膠片後,以符合國際規範ASTM D5470的穩態量測機台,熱傳導係數已證實達7.02 W/mK。再透過黏度計及熱重分析儀(Thermogravimetric analysis, TGA)測試,已知該導熱膠材具有黏度335 Pa·sec,及熱裂解溫度達391.36 ℃的性能表現。

    關鍵詞:熱界面材料、氮化鋁、石墨烯、多壁奈米碳管、協同效應、半熟成技術、熱傳導係數

    In this study, we used atmospheric plasma (APP system) to modified the particles of alumina nitride (AlN) and graphene platelets. Then the modified materials will be added into polydimethylsiloxane (PDMS). After vacuum degassing mixer mixing, aluminum nitride particles would achieve uniformity among PDMS. In this thermal grease, the graphene platelets and the modified aluminum nitride particles had the synergistic effect. The filler of the aluminum nitride particles produced a array structure in the PDMS, so it could avoid aggregation phenomenon of graphene, reduce the thermal boundary resistance, and improve heat transfer characteristics in thermal grease. The present study of 60 wt% of using atmospheric plasma modified alumina nitride particles and 4 wt% of carbon materials in PDMS have the thermal conductivity coefficient of 7.02 W/mk. The thermal conductivity is 70 times of pure PDMS.

    KEYWORDS: thermal grease, atmospheric plasma, alumina nitride, graphene, synergetic effect

    總 目 錄 中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2熱界面材料工作原理 2 1.3導熱膠 4 1.4碳材料介紹 6 1.4.1奈米碳管 7 1.4.2石墨烯 8 1.5論文架構 9 第二章 文獻回顧與理論探討 10 2.1熱界面材料 10 2.1.1熱界面材料分類與比較 13 2.2奈米碳材於導熱膠材應用 23 2.3填充顆粒改質對於熱界面材料之影響 26 2.4協同效應(Synergistic effect)之影響 37 2.5導熱特性量測方法 40 2.6研究動機與目的 42 第三章 實驗設計與規劃 44 3.1實驗程序流程規劃 44 3.2大氣電漿表面改質技術 47 3.3調整導熱膠材中適當填充物百分比 50 3.3.1不同表面型態之氮化鋁粉末與填充比例關係 50 3.3.2奈米碳材對於導熱膠材的協同效應 53 3.4導熱膠材品質檢測 57 3.4.1量測樣本製備方式 57 3.4.2導熱係數量測 59 3.4.2導熱膠材性質量測 60 3.5製程與檢測實驗設備 61 第四章 實驗結果與討論 63 4.1大氣電漿表面改質技術 63 4.1.1大氣電漿對於氮化鋁顆粒表面改質效果之比較 63 4.1.2大氣電漿對於奈米碳材表面改質效果之比較 69 4.1.3大氣電漿表面改質技術對於導熱係數之影響導 77 4.1.4大氣電漿改質技術優劣 83 4.2不同熱傳導係數量測方法比較 85 4.3填充顆粒表面型態對於熱傳導係數之影響 88 4.4導熱膠材固化程度對於導熱係數之影響 93 4.5碳材添加比例對於熱傳導係數之影響 97 4.6導熱膠材相關性質分析 99 第五章 結論與未來展望 102 5.1 結論 102 5.2 未來展望 103 參考文獻 104

    參考文獻
    1. K. M. F. Shali and A. A. Balandin, ”Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials”, Solid State Communications, 152, pp. 1331-1340 (2012).
    2. J. P. Gwinn and R. L. Webb, “Performance and testing of thermal interface materials”, Microelectronics Journal, 34, pp. 215-222(2003).
    3. http://www.tglobal.com.tw/what-is-thermal-interface-material.php
    4. http://www.google.com/patents/CN203934231U?cl=zh
    5. http://www.bit-tech.net/hardware/2009/02/16/all-about-tim/
    6. A. A. Hashim, “Smart nanoparticles in technology”,InTech Publications, 2012
    7. A. F. Junior, D. J. Shannafield, “Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics”, Cerâmica, vol.50 (2004).
    8. https://manojkumars.wordpress.com/2011/04/14/graphene/
    9. H. W. Kroto, “C60: Buckminsterfullerene, The Celestial Sphere that Fell to Earth”, Angewandte Chemie,31, pp.111-246 (1992).
    10. W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “ Solid C60: a new form of carbon”, Nature ,347, pp. 354-357(1990).
    11. A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, “ Superconductivity at 18K in potassium-doped C60”, Nature, pp.600-601 (1991).
    12. J. J. M. Hall, K. Pichler, and R. H. Friend, ”Exiction diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovolatic cell”, Appl. Phys. Lett., 22, pp.3120-3122 (1996).
    13. S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp.603-605 (1993).
    14. D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, and Q, H Yang, “Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage”, Ascnano, 3, pp. 3730- 3736 (2009).
    15. https://en.wikipedia.org/wiki/Graphene
    16. S. S. Pei, and W. Wu,”Sythesis of Graphene Films: From Mechanical Exfoliation to Roll-to-Roll Manufacturing by Chemical Vapor Deposition”, AAPPS Bulletin, 23, pp. 4-7 (2013).
    17. K. S. Novoselov, A. K. Geim, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, ”Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, pp.197-200 (2005).
    18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,1 M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers” Physical review letters, 97, pp. 187401 (2006).
    19. 謝雅萍, “目睹原子-利用光來發掘石墨烯(Graphene)”物理雙月刊, (2011).
    20. A. Ouerghi M. Ridene, C. Mathieu, N. Gogneau and R. Belkhou, “From nanographene to monolayer graphene on 6H-SiC(0001) substrate”, Applied physics letters, 102, pp. 253108 (2013).
    21. W. Zhou, S. Qi and C. Tu, “Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber”, Journal of Applied Polymer Science, 104, pp. 1312-1318 (2007).
    22. 黃振東,「熱界面材料特性及應用」,工業材料雜誌,第 222期 2005年,P83-92
    23. M. Shtein, R. Nadiv, M. Buzaglo and O. Regev, “Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices”, Applied Materials & Interfaces, 7, pp. 23725-23730 (2015).
    24. K. M. F. Shali and A. A. Balandin, ”Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials”, Solid State Communications, 152, pp. 1331-1340 (2012).
    25. 邱國展,「熱界面材料開發概論」,工業材料雜誌,第217期,2005年,P105-111.
    26. F. Sarvar, D. C. Whalley and P. P. Conway, , “Thermal interface materials- A review of the state of the art.”, Electronics systemintegration technology conference, 2, pp. 1292-1302 (2006).
    27. Y. X. Fu, Z. X. He, D. C. Mo and S. S. Lu, ”Thermal conductivity enhancement with different fillers for epoxy resin adhesives”, Applied Thermal Engineering, 66, pp.493-498 (2014).
    28. A. A. Balandin, S. Ghosh, W. Bao, I. Cailzo, D. Teweldebrhan, F. Miao and C. N. Lau, ”Superior thermal conductivity of single-layer graphene”, Nanoletters, 8, pp. 902-907 (2008).
    29. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, R. B. Kaner, K. Kalantar-zadeh and W. Wlodarski, “ Graphene-like nano-sheets for surface acoustic wave gas sensor application”, Chemical Physics Letters, 467, pp. 344-347 (2009).
    30. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity”, Nanotechnology, 19, pp. 1-4 (2008).
    31. H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim and S. Y. Choi, ”Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films”, Applied Physics Letters, 96, pp. 213105(1)-213105(3) (2010).
    32. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, ”Graphene-based supercapacitor with an ultrahigh energy density”, Nanoletters, 10, pp. 4863-4868 (2010).
    33. L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs and W. Y. Lee, “Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide”, Electrochemistry Communications, 13, pp. 355-358 (2011).
    34. L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based mterials as supercapacito electrodes”, Journal of Materials Chemistry, 20, pp. 5983-5992 (2010).
    35. K. Zhang, L. L. Zhang, X. S. Zhao and J. Wu, “Graphene/polyanilane nanofiber composites as supercapacitor electrodes”, Chemistry of Materials, 22, pp. 1392-1401 (2010).
    36. W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao and Z. Zhang, “Grapene based silicone thermal greases”, Physics Letters A, 378, pp. 207-211 (2014).
    37. X. Huang, T. Iizuka, P. Jiang, Y. Ohki and T. Tanaka, “Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites”, The Journal of Physical Chemistry, 116, pp.13629-13639 (2012).
    38. C. C. Teng, C. C. M. Ma, K. C. Chou and T. M. Lee, “Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride”, Composites: Part B, 43, pp.265-271 (2012).
    39. 陳柏舟、周文祥,”添加氮化鋁和奈米碳管導熱片之性質研究”,國立台北科技大學,碩士,102。
    40. S. T. Chang, F. W. Wang and C. C. Cuei, China Patent NO. 105385106 (2016. 03. 09).
    41. W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia and L. Chen, ”Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina”, International Journal of Thermal Sciences, 91, pp. 76-82 (2015).
    42. W. Yu, H. Xie, L. Chen, M. Wang and W. Wang, “Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets”, Polymer Compostes, 10, pp. 1-7 (2015).
    43. K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology”, Microsystem Technologies, 9, pp. 5-10 (2002).
    44. K. N. Pandiyaraj, V. Selvarajan and R. R. Deshmukh, ”Effects of operating parameters on DC glow discharge plasma induced PET film surface.”, Journal of Physics D: Applied Physics, 208, pp. 1-7 (2008).
    45. L. J. Ward, J. P. S. Badyal, A. J. Goodwin and P. J. Merlin, “Solventless coupling of perfluoroalkylchlorosilanes to atmospheric plasma activated polymer surfaces.”, Polymer, 46, pp. 3986-3991 (2005).
    46. M. J. Sheton, M. C. Lovell-Hoare and G. C. Stevens, “Adhesion enhancement of polymer surfaces by atmospheric plasma treatment.”, Journal of Physics D: Applied Physics, 34, pp. 2754-2760 (2001).

    47. S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips.” Journal of micromechanics and microengineering, 18, pp.1-8 (2008).
    48. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.” Carbon, 45, pp. 1558-1565 (2007).
    49. C. L. Wu, C. Y. Yang, T. P. An, J. W. Lin and C. K Sung, “Anti-adhesion treatment for nanoimprint stamps using atmospheric pressure plasma CVD (APPCVD).” Applied Surface Science, 261, pp. 441-446 (2012).
    50. D. N. Travessa, F. S. D. Silva, F. H. Cristovan, A. M. Jorge Jr. and K. R. Cardoso, “ Ag ion decoration for surface modifications of multi-walled carbon nanotubes.”, Materials Reasearch, 17, pp. 687-693 (2014).

    下載圖示
    QR CODE