簡易檢索 / 詳目顯示

研究生: 陳易廷
Chen, Yi-Ting
論文名稱: 應用於5G行動通訊之毫米波可變增益放大器設計
Design of Millimeter-Wave Variable Gain Amplifiers for 5G Mobile Communications
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 李威璁
Li, Wei-Tsung
林文傑
LIN, WEN-CHIEH
蔡政翰
Tsai, Jeng-Han
口試日期: 2022/08/15
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 可變增益放大器電流控制架構基極偏壓共振腔相位反轉
英文關鍵詞: Complementary Metal Oxide Semiconductor (CMOS), Variable Gain Amplifier (VGA), Current Steering
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201630
論文種類: 學術論文
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要 I ABSTRACT II 1 誌 謝 III 3 圖 目 錄 VI 4 表 目 錄 X 1 第一章 緒論 1 1.1 背景與動機 1 1.2 文獻探討 2 1.2.1 可變增益放大器 2 1.3 研究成果 3 1.4 論文架構 4 2 第二章 可變增益放大器設計介紹 5 2.1 簡介 5 2.2 可變增益放大器之架構 6 2.2.1 Current Sterring架構 6 2.2.2 數位控制 7 2.3 可變增益放大器之設計參數 8 2.3.1 散射參數(S-parameters) 8 2.3.2 可變增益範圍(Gain Control Range,GCR) 9 2.3.3 相位誤差(Phase Error) 10 2.3.4 雜訊指數(Noise Figure, NF) 10 2.3.5 穩定度 11 2.3.6 均方根相位差、均方根振幅誤差(RMS Phase Error, RMS Amplitude Error) 11 3 第三章 28GHz可變增益放大器設計 12 3.1 簡介 12 3.2 可變增益放大器設計 13 3.2.1 預計規格 13 3.2.2 Current Steering之基極偏壓(Body Bias)技術 13 3.2.3 主電路電晶體偏壓分析與選擇 14 3.2.4 主電路電晶體尺寸分析與選擇 16 3.2.5 Current Steering電晶體偏壓及尺寸選擇與分析 20 3.2.6 設計匹配網路 22 3.2.7 旁路電路考量 25 3.3 可變增益放大器之模擬結果 27 3.4 可變增益放大器之量測結果 36 3.5 結果與討論 45 3.6 總結 48 4 第四章 寬頻可變增益放大器設計 50 4.1 簡介 50 4.2 相位補償技術及基極偏壓技術之數位控制 51 4.2.1 相位補償技術 51 4.2.2 Current Steering之基極偏壓(Body Bias)技術 54 4.3 低相位寬頻可變增益放大器設計 55 4.3.1 主電路電晶體偏壓分析與選擇 56 4.3.2 主電路電晶體尺寸分析與選擇 58 4.3.3 Current Steering 電晶體偏壓及尺寸分析與選擇 61 4.3.4 基級偏壓技術使用 62 4.3.5 降低相位設計 63 4.3.6 匹配網路設計 63 4.3.7 旁路電路設計 67 4.4 可變增益放大器之模擬結果 69 4.5 可變增益放大器量測結果 79 4.6 結果與討論 89 5 第五章 結論 93 參 考 文 獻 94 自  傳 99 學 術 成 就 100

    [1] D. Goovaerts, FCC unanimously opens nearly 11 GHz of spectrum for 5G [Online], Available:https://www.ecnmag.com/news/2016/07/fcc-unanimously-opens-nearly-11-ghz-spectrum-5g, 2016
    [2] B. -W. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
    [3] Z. -M. Tsai, J. -C. Kao, K. -Y. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, 2009, pp. 1625-1627.
    [4] P. -H. Lo, C. -C. Lin, H. -C. Kuo and H. -R. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 42nd European Microwave Conference, 2012, pp. 858-861.
    [5] Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp. 1200-1202.
    [6] Y. -K. Hsieh, J. -L. Kuo, H. Wang and L. -H. Lu, "A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612.
    [7] Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949.
    [8] D. -S. Siao, J. -C. Kao and H. Wang, "A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459.
    [9] H. -C. Yeh, S. Aloui, C. -C. Chiong and H. Wang, "A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913.
    [10] Ken Leong Fong, "Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications," 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), 1999, pp. 224-225.
    [11] J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301.
    [12] Che-Chung Kuo, Zuo-Min Tsai, Jeng-Han Tsai and H. Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 609-612.
    [13] 盧德任,毫米波低相位變異可變増益放大器與低雜訊放大器之研製,國立臺灣大學電信工程學研究所碩士論文,2012年
    [14] 羅珮華,毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,2011年
    [15] J. -H. Tsai and T. -W. Huang, "35–65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
    [16] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G.J. Chern, “Design and analysis of CMOS broad-band compact highlinearity modulators for gigabit microwave/millime
    ter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006
    [17] J. -H. Tsai, "Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011.
    [18] S. -H. Weng, C. -H. Shen and H. -Y. Chang, "A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications," 2012 7th European Microwave Integrated Circuit Conference, 2012, pp. 8-11.
    [19] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 1611–1614.
    [20] H. -Y. Chang, S. -H. Weng and C. -C. Chiong, "A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 5, pp. 332-334, May 2009.
    [21] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, "Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [22] Y. Kim and Y. Kwon, "A 60 GHz Cascode Variable-Gain Low-Noise Amplifier With Phase Compensation in a 0.13 μm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 7, pp. 372-374, July 2012.
    [23] C. W. Byeon, I. S. Song, S. J. Cho, H. Y. Kim, C. Lee and C. S. Park, "A 60 GHz Variable Gain Amplifier with a Low Phase Imbalance in 0.18 μm SiGe BiCMOS Technology," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct 2012.
    [24] K. -Y. Kao, D. -R. Lu, J. -C. Kao and K. -Y. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016, pp. 1-3.
    [25] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, "Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [26] D. -S. Siao, J. -C. Kao and H. Wang, "A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [27] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2×2 Beamformer Flip-Chip Unit Cell," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018.
    [28] H. -T. Kim et al., "A 28GHz CMOS direct conversion transceiver with packaged antenna arrays for 5G cellular system," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 69-72.
    [29] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018.
    [30] Jingxue Lu and Fengyi Huang, "Comments on "CMOS low-noise amplifier design optimization techniques"," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 3155-, July 2006.
    [31] J. Jang, J. Oh, C. -Y. Kim and S. Hong, "A 79-GHz Adaptive-Gain and Low-Noise UWB Radar Receiver Front-End in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 859-867, March 2016.
    [32] Y. Yi, D. Zhao and X. You, "A Ka-band CMOS Digital-Controlled Phase-Invariant Variable Gain Amplifier with 4-bit Tuning Range and 0.5-dB Resolution," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 152-155.
    [33] J. -H. Tsai and C. -L. Lin, "A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019.
    [34] B. -W. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
    [35] B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016, pp. 150-153.
    [36] Chia-Yu Hsieh, Jui-Chih Kao, J. -J. Kuo and K. -Y. Lin, "A 57–64 GHz low-phase-variation variable-gain amplifier," 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3.
    [37] D. -S. Siao, J. -C. Kao and H. Wang, "A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [38] 林禎芳,38 GHz 可變增益放大器與單邊帶調變混頻器設計,國立臺灣師範大學電機工程研究所碩士論文,2019年
    [39] 鄭伊佐,38 GHz 單邊帶混頻器與可變增益放大器設計,國立臺灣師範大學電機工程研究所碩士論文,2021年

    無法下載圖示 本全文未授權公開
    QR CODE