研究生: |
簡錦鳳 Chin-Feng Chien |
---|---|
論文名稱: |
文字鷹架對七年級學生科學解釋能力的影響 Exploring the Impacts of Written Scaffolds on Seventh Graders’ Scientific Explanation Skills |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 鷹架 、科學解釋 、科學解釋能力 、近側發展區 |
英文關鍵詞: | Scaffolds, Scientific explanations, Explanation skills, ZPD |
論文種類: | 學術論文 |
相關次數: | 點閱:199 下載:64 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在探討使用文字鷹架對七年級學生學習科學解釋的影響,並且分析鷹架的褪除與科學解釋能力成長的關係。研究資料來自公立國民中學三個班級共87名學生,實施以學習單文字鷹架教學的科學解釋課程,課程實施時間為5週,三個班級使用的鷹架分別為(1)在三次活動中都接受完整文字敘述的學習單;(2)在第三次活動接受褪除部分文字敘述的學習單;(3)在第二和三次活動接受褪除部分文字敘述的學習單,最後,分析學生的科學解釋在分辨變因、提出主張、找出證據和推理解釋等分項能力上的成長情形。研究結果發現,找出證據和推理解釋對七年級學生而言是比較困難的科學解釋能力,學生無法將實驗資料作為與主張連結的證據,以進行符合邏輯推理的解釋,卻常以個人直觀經驗說明科學現象;經過科學解釋課程後,以找出證據的能力成長最明顯;持續的完整文字式鷹架教學對學生在學習提出主張的能力上幫助最大,過早褪除鷹架將會造成學習退步;而且不同學習成就學生的學習結果,以中成就學生在接受持續完整鷹架教學後,科學解釋能力進步最多。另外,亦發現學生對科學概念的理解與科學解釋的學習有關係。
The purpose of this study is to explore the impacts of written scaffolds on the development of seventh graders’ scientific explanation skills. The data were collected from 87 seventh graders in three classes at a public junior high school. During 5 weeks, each class received one of the treatments: (1) continuous scaffolds involving detailed written instructional support on the worksheets in all three activities, (2) scaffolds faded in the third activity, and (3) scaffolds faded in the second and third activities. In addition, this study investigates four types of explanation skills in terms of students’ skills to differentiate the variables, to make a claim, to discover the evidences, and to describe the reasoning process. The results show that, first, the skills to discover the evidences and to describe the reasoning process were difficult to seventh-grade students. Some students could not use data as evidence to support their claims and usually explained the scientific events on the basis of their individual intuitive experiences. Second, analyses showed that the class with continuous scaffolds developed more competent explanation skills compared to the classes with faded scaffolding. Among the different achievement groups, middle achieving group improved the most in the skill to describe the reasoning process. Finally, the results also revealed that the students’ conceptual understanding was related to their learning of scientific explanations.
一、中文部分
毛松霖 (1990) 。解釋資料與形成假設及認知發展層次間相互關係測試工具之發展研究 。第五屆科學教育學術研討會論文彙刊。
王以德 (1992) 。我國國中學生邏輯思考與科學過程技能的研究。彰化師範大學科學教育研究所碩士論文。
自然與生活科技課程綱領研究小組 (2000) 。國民教育九年一貫課程綱領之自然與生活領域課程綱領。教育部。
吳佳蓮 (2006) 。科學探究活動中國小五年級學童科學解釋能力及認識論之研究。國立台灣師範大學科學教育研究所碩士論文。
谷瑞勉(譯)(1999) 。Berk, L. E. & Wisler, A.著 。鷹架兒童的學習:維高斯基與幼兒教育。台北:心理。
林正弘 (1988) 。伽利略、波柏、科學說明。台北:東大。
姜滿 (1993) 。國小學童地球科學概念之理解。台南師院學報,26,193-219。
段德智、尹大貽、金常政(譯)(1999)。Angeles著。哲學辭典。台北:貓頭鷹。
徐椿樑 (2001) 。鷹架學習理論在專業技術教學的成效分析之研究。國立台灣師範大學工業教育研究所博士論文,未出版,台北市。
陳定邦 (2003) 。鷹架教學概念在成人學習歷程上應用之研究。國立台灣師範大學社會教育學研究所博士論文。
陸正威 (1999) 。同儕交互指導教學。教學實習輔導季刊,4(4),24-29。
陸健體 (1994) 。關於世界的問答-科學說明。台北:淑馨出版社。
黃文吟 (2000) 。從高中學生解釋物理現象的表徵與評價探討其概念架構與認識取向。彰化師範大學科學教育研究所博士論文。
黃達三 (1998) 。國小教師於科學教育的口語解釋研究。科學教育學刊,6(3), 285-302。
鄭明長 (1997) 。 近側發展區對教學活動的啟示。研習資訊雙月刊,14(2),79-85。
謝州恩 (2004) 。 探究情境中國小學童科學解釋能力成長之研究。國立台灣師範大學科學教育研究所碩士論文。
二、西文部分
Bass, J. E., & Maddux, C. D. (1982). Scientific explanations and Piagetian operational levels. Journal of Research in Science Teaching, 19(7), 533-541.
Bateson, G. (1979). Mind in nature: A necessary unity: New York: Dutton.
Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: Designing for learning from the Web with KIE. International Journal of Science Education, 22, 797-817.
Bruner, J. (1985). Vygotsky: a historical and conceptual perspective. In J. Wertsch (Ed.), Culture, communication and cognition: Vygotskian perspectives. New York: Cambridge University Press.
Carey, S., & Smith, C. (1993). On understanding the nature of science knowledge. Educational Psychologist, 28(3).
Chen, F. C., Jiang, H. M., Lin, H. L., & Wang, H. R. (2001). A modified framework of LAIN for PBL high school learners: A portfolio-directed web environment for science contests: Center for Teacher Education Institute of Atmospheric Physics. TW: National Central University.
Chinn, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37, 109–138.
Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12, 91-142.
Davis, E. A., & Miyake, N. (2004). Explorations of scaffolding in complex classroom systems. The Journal of the Learning Science, 13, 265-272.
Doolittle, P. E. (1998). Vygotsky's zone of proximal development as a theory foundation for cooperative learning. Virginia Polytechnic Institute and State University.
Driver, R., Guesue, E., & Tiberghien, A. (1985). Some features of children's ideas and their implications for teaching. In E. G. R. Driver, & A. Tiberghein (Ed.), Children’s Ideas in Science (pp. 193-201). Milton Keynes: O U Press.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science. Milton Keynes, UK: Open University Press.
Edgington, J. R. (1997). What constitutes a scientific explanation? Paper presented at the annual meeting of the National Association for Research in Science Teaching, Oak Brook, IL.
Friedman, M. (1988). Explanation and understanding. In J. C. Pitt (Ed.), Theories of explanations (pp. 180-198): New York: Oxford University Press.
Halliday, M. A. K., & Martin, J. R. (1993). Writing science: Literacy and discursive power: Pittsburgh: University of Pittsburgh Press.
Harrarinen, K. (2004). Pursuit of explanation within a computer-supported classroom. International Journal of Science Education, 26(8), 979-996.
Hempel, C. (1965). The logic of functional analysis. In Aspects of scientific explanations and other essays in the philosophy of science (pp. 297-330). New York: The Free Press; London: Collier-Macmillan.
Hogan, K., & Pressley, M. (1997). Scaffolding scientific competencies within classroom communities of inquiry. In K. H. M. Pressley (Ed.), Scaffolding Student Learning: Instructional Approaches and issues (pp. 74-107): Cambridge, MA: Brookline Books.
Horwood, R. H. (1988). Explanation and description in science teaching. Science Education, 72, 41-49.
Jones, M. G., & Carter, G. (1998). Small groups and shared constructions. Teaching science for understanding: A human constructivist view: San Diego, CA: Academic Press.
Judithann, W. W. (1993). Weekend report: A qualitative study of the scaffolding strategies used by a teacher of children with handicaps during a “sharing time” discourse event. Dissertation: University of Cincinnati.
Kathleen, E. M. (1998). Scientific inquiry within research of young children. In International Handbook of Science Education (pp. 81-96): Great Britian, Kluwer Academic Publishers.
Keating, J., Greenberg, R. D., Baldwin, M., & Thousand, J. (1998). A collaborative action research model for teacher preparation programs. Journal of Teacher Education, 49(5).
King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain. American Educational Research Journal, 31(2), 338-368.
Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
Kuhn, L., & Reiser, B. (2004). Students constructing and defending evidence-based scientific explanations. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Dallax, TX.
Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: a review of the research. Journal of Research in Science Teaching, 29(4), 331-359.
Lee, H.-S., & Songer, N. B. (2004). Longitudinal knowledge development: Scaffolds for Inquiry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.
Lee, O., & Fradd, S. H. (1998). Science for all, including students from non English-language backgrounds. Educational Researcher, 27(4), 12-21.
Linn, M. C., & Songer, N. B. (1993). How do students make sense of science? Merrill-Palmer Quarterly, 39(1), 47-73.
Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Education in Science & Technology, 31, 97-111.
Mayer, E. (1988). Toward a new philosophy of biology Cambridge, MA and London: Harvard University Press.
McArthur, D., Stasz, C., & Zmuidzinas, S. (1990). Tutoring techniques in algebra. Cognition and Instruction, 7, 197-244.
McLoughlin, C. (2002). Learner Support in Distance and Networked Learning Environments: Ten Dimensions for Successful Design. Distance Education, 23, 149-162.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting Students' Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Learning Sciences, 15(2), 153-191.
Metz, K. E. (2000). Young children's inquiry in biology: Building the knowledge bases to empower independent inquiry. In J. Minstrell & E. H. van Zee (Ed.), Inquiry into inquiry learning and teaching in science (pp. 371–404). Washington, DC: American Association for the Advancement of Science.
Ohlsson, S. (1992). The Cognitive skill theory of articulation: A neglected aspect of science education. Science Education, 1, 111-192.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41, 994-1020.
Palincsar, A. S. (1998). Keeping the metaphor of scaffolding fresh—A response to C. Addison Stone's“The metaphor of scaffolding: Its utility for the field of learning disabilities.” Journal of Learning Disabilities, 31, 370-373.
Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117-175.
Pallrand, G. J. (1996). The relationship of assessment to knowledge development of science education: Phi Delta Kappan.
Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13, 423-451.
Puntambekar, S., & Kolodner, J. L. (1998). Distributed scaffolding: Helping students learn in a learning by design environment. Paper presented at the Proceedings of the International Conference of the Learning Sciences(ICLS 1998).
Reiser, B., Tabak, I., Sandoval, W., Smith, B., Steinmuller, F., & Leone, A. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. C. D. Klahr (Ed.), Cognition and instruction: Twenty-five years of progress (pp. 263-305): Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Roehler, L. R., & Cantlon, D. J. (1997). Scaffolding: A powerful tool in social constructivist classrooms: Cambridge, MA : Brookline Books.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context: New York: Oxford University Press.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513-536.
Sandoval, W. (2003). Conceptual and epistemic aspects of students’ scientific explanations. The Journal of the Learning Sciences, 12, 5-51.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.
Schulz, S. (1993). Structure and content of children’s explanations of physical events . Paper presented at the Based on a poster presented at the AERA Annual Meeting, Atlanta, Georgia.
Scriven, M. (1988). Explanations, predictions and laws. In J. C. Pitt (Ed.), Theories of explanation (pp. 51-74). New York: Oxford University.
Solomon, J. (1986). Children's Explanations. Oxford Review of Education, 12(1), 41-51.
Stone, C. A. (1993). What is missing in the metaphor of scaffolding? In E. A. Forman, N. Minick & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development (pp. 169-183): New York: Oxford University Press.
Stone, C. A. (1998). The metaphor of scaffolding: its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 344-364.
Sutherland, L. M. (2002). Guidelines for Explanation in Scientific Inquiry, UM and UPS teacher meetings (July).
Tharp, R. G., & Gallimore, R. (1991). The instructional conversation: Teaching and learning in social activity: Santa Cruz, CA: National Center for Research on Cultural Diversity and Second Language Learning. (ERIC Document Reproduction Service No. ED 341254).
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological precesses. Cambridge: MA: Harvard University Press.
White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3-118.
White, B., & Frederiksen, J. (2000). Metacognitive facilitation: An approach to making scientific inquiry accessible to all. In J. Minstrell & E. v. Zee (Ed.), Inquiring into inquiry learning and teaching in science (pp. 331-370): Washington, DC: American Association for the Advancement of Science.
Wong, E. D. (1996). Students' scientific explanations and the contexts in which they occur The Elementary School Journal, 96(5), 495-509.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching,, 39, 35-62.
Zuzovsky, R., & Tamir, P. (1999). Growth Patterns in Students' Ability to Supply Scientific Explanations: Findings from the Third International Mathematics and Science Study in Israel. International Journal of Science Education, 21(10), 1101-1121.