研究生: |
陳彥翔 Yan-Siang Chen |
---|---|
論文名稱: |
電化學沉積三元熱電材料之技術開發 Development of electrodeposition technique for ternary thermoelectric materials |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 三元熱電材料 、電化學沉積技術 、微致冷晶片 |
英文關鍵詞: | Ternary thermoelectric material, electrochemical deposition technology, micro-cooler |
論文種類: | 學術論文 |
相關次數: | 點閱:143 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用電化學沉積三元熱電材料,添加SeO2於鍍液中沉積n型及p型 Bi-Te-Se熱電材料,探討因添加SeO2後所造成鍍層表面形貌與成份比例變化。同時,量測其最佳熱電特性,其中包含席貝克係數、導電率以及藉由平行線量測熱傳導係數。最後,利用已知熱電特性的三元熱電材料,搭配微機電製程技術與覆晶接合技術,進行微致冷晶片之研製與性能評估。
本實驗以HNO3 1 M、Bi2O3 7.5 mM、TeO2 10 mM、SeO2 3 mM金屬氧化粉末進行三元熱電材料之電化學沉積。經分析結果證實,於鍍液中添加SeO2後所形成之三元熱電鍍液,有助鍍層的熱電特性提升。經實驗發現在SeO2添加量為3 mM時,根據不同電流密度調變下,可促使Bi-Te-Se三元熱電材料n型與p型特性轉換,當電流密度為1 mA/cm2時,材料為p型特性;當電流密度高於1.85 mA/cm2時,材料為n型特性。量測n型Bi28.8Te43.8Se27.4熱電材料熱電特性,其席貝克係數為-459 V/K、導電率為6.23 103 Ω-1cm-1,故功率因子為1.32 10-3 W/K2m,其值為二元p型Bi2Te3的11.3倍;p型 Bi20.1Te46.7Se33.2熱電材料,席貝克係數為407 V/K、導電率為7.36 103 Ω-1cm-1,故功率因子為1.22 10-3 W/K2m,其值為二元p型Sb2Te3的2倍。上述的實驗結果證實,二元熱電材料Bi2Te3在添加SeO2下,對於熱電特性有良好的改善效果。
將已知熱電特性的熱電材料,藉由電化學沉積技術搭配微機電製程與覆晶接合技術,成功研製出24對的三維微致冷晶片,其熱電接腳尺寸為200 m的方形陣列,電鑄高度約為10 m,後續將製作完成元件並量測其致冷性能,並比較在不同通過電流條件下的致冷能力。
In this study, n-type and p-type Bi-Te-Se ternary thermoelectric materials are electroplate by added SeO2 electrochemical deposition method. The effect of SeO2 added on electroplated film, surface and component ratio were discussed in this thesis. Measured thermoelectric properties of ternary thermoelectric materials which Seebeck coefficient, conductivity and thermal conductivity by parallel line method. Therefore, the ternary thermoelectric materials with known properties were applied to fabricate micro-cooler by MEMS process and flip chip bonding technique.
The concentration of Bi2O3, TeO2 and SeO2 metal powder was 7.5 mM, 10 mM, and 3 mM. The experiments confirmed electroplate thin film analysis, added SeO2 could improve the thermoelectric properties. The added concentration of SeO2 is 3 mM. The material propertiy is p-type when the current density under 1 mA/cm2. The material propertiy is n-type when current density is higher than 1.85 mA/cm2. The measurement results, the n-type Bi28.8Te43.8Se27.4 electroplated films exhibited the Seebeck coefficients of -459 μV/K, conductivity of 6.23 103 Ω-1cm-1 and a maximum power factor of 1.32×10−3 W/K2m, the value is 11.3 times of Bi2Te3. The p-type Bi20.1Te46.7Se33.2 electroplated films exhibited the Seebeck coefficients of 407 μV/K, conductivity of 7.36 103 Ω-1cm-1 and a maximum power factor of 1.22×10−3 W/K2m, the value is double of Sb2Te3. In Bi2Te3 material, the thermoelectric characteristic could be improved by adding SeO2.
Micro-coolers with 24 Bi28.8Te43.8Se27.4/ Bi20.1Te46.7Se33.2 pairs were fabricated by electrochemical deposition, MEMS techniques and flip chip bonding techniques, in which the dimension of the thermoelectric legs is 200 m and thickness of the electroform is 10 m. Furthermore, the comparison of the cooling capability under different conditions will be measured.
1.Microsoft, http://www.microsoft.com.
2.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142, 2003.
3.朱旭山, "熱電材料與元件之發展與應用", 工業材料雜誌, 第220期, 2005.
4.http://www.marlow.com/
5.http://www.sii.co.jp/
6.林克衛, "熱電材料在汽車廢熱回收的應用", 車輛研測資訊,財團法人車輛研究測試中心, 六月, 2006
7.周政泰 等人, "微冷卻技術發展現況", 機械工業雜誌, 第245期, 2005.
8.W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, and L. Weber, "Materials of LIGA technology", Microsystem Technologies, Vol. 5, No. 3, pp. 105-112, 1999.
9.D. M. Rowe, "Thermoelectrics handbook micro to nano", 2006.
10.D. J. Yao, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, 2001.
11.http://www.alexandrite.cc/
12.L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials Vol. 33, pp. 558-561, 1997.
13.L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, pp. 678-681, 1995.
14.L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 single-crystals", Inorganic Materials, Vol. 31, pp. 682-686, 1995.
15.A. Borshchevsky, "Handbook of thermoelectrics", 1995.
16.O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, pp. 368-374, 2003.
17.D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science, Vol. 33, pp. 5595-5600, 1998.
18.http://www.substech.com/dokuwiki/doku.php?id=advertising_opportunities
19.D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science Vol. 36, Number 5, pp. 1285-1291, 2001.
20.B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, "High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity", Physical Review Letters Vol. 86, Issue 19, pp. 4350-4353, 2001.
21.P. Ruleova, C. Drasar, P. Lostak, C.-P. Li, S. Ballikaya, C. Uher, "Thermoelectric properties of Bi2O2Se", Materials Chemistry and Physics Vol. 119, pp. 299–302, 2010.
22.http://www.substech.com/dokuwiki/doku.php
23.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature Vol. 413, pp. 597-602, 2001.
24.J. Seo, K. Park, D. Lee, and C. Lee, "Microstructure and thermoelectric properties of p-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion", Scripta Materialia, Vol. 38, Issue 3, pp. 477-484, 1998.
25.http://www.kompas.or.kr/mail/200311/equip.html
26.J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, Issue 5, pp. 347-351, 2005.
27.Y. Zhou, X. Lin, S. Bai, L. Chen, "Comparison of space and ground grown Bi2Se0.21Te2.79 thermoelectric crystals thermoelectric crystals", Journal ofCrystalGrowth, Vol. 312, pp. 775–780, 2010.
28.L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems", Journal of Applied Physics, Vol. 97, pp. 114903.1-114903.10, 2005.
29.L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, " On-chip array of thermoelectric Peltier microcoolers", 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 2179-2182, 2007.
30.Ambika and P. B. Barman, "An optical study of vacuum evaporated Se85-xTe15Bix chalcogenide thin films", Physica Vol B 405, pp. 822–827, 2010.
31.D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films Vol. 510, pp. 148-153, 2006.
32.D. H. Kim, G. Lee and O. Kim, "The influence of post-deposition annealing on thermoelectric properties of Bi–Sb–Te films prepared by sputtering", Semicond. Sci. Technol, Vol. 22, pp. 132–136, 2007.
33.http://upload.wikimedia.org/wikipedia/en/9/98/GenericMOCVD.
34.A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, pp. 5009-5014, 2001.
35.A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, pp. 19-24, 1999.
36.A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films Vol. 315, pp. 99-103, 1998.
37.G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by MEMS-like electrochemical process", Nature Materials, Vol. 2, pp. 528-532, 2003.
38.J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the jet propulsion laboratory (JPL)", 21th International Conference of Thermoelectrics, pp. 535-539, 2002.
39.J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, and M. Nicolet, "Development of thick-Film thermoelectric microcoolers using electrochemical deposition", Materials Research Society Symposium Proceedings, Vol. 545, pp. 493-500, 1998.
40.J. P. Fleurial, G. J. Snyder, J. A. Herman, P. H. Giauque, W. M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, and M. A. Nicolet, "Thick-film thermoelectric microdvices", 18th International Conference of Thermoelectrics, pp. 294-300, 1999.
41.I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen, and J. S. Kuo, "Development of low-cost micro-thermoelectric coolers utilizing MEMS technology", Sensors and Actuators A, Vol. 148, pp. 176-185, 2008.
42.B. Luxia, W. Wei and W. Hui, "Electrodeposition of n-type Bi2Te3−ySey thermoelectric thin films on stainless steel and gold substrates", Applied Surface Science, Vol. 253, pp. 3360–3365, 2007.
43.K. Hilal, B.Mustafa, T. Cagla, A. Osman and S. Ilkay. , "The underpotential deposition of Bi2Te3−ySey thin films by an electrochemical co-deposition method", Electrochimica Acta, Vol. 54, pp. 1680–1686, 2009.
44.L. SuKyum, K. MinYoung and O. TaeSung, "Thermoelectric properties of the bismuth–antimony–telluride and the antimony–telluride films processed by electrodeposition for micro-device applications", Thin Solid Films, Vol. 517 , pp. 4199–4203, 2009.
45.T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, "Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured by a Square Micro-Four-Point Probe Method", Physical Review Letters, Vol. 9, No. 3, pp. 036805, 2003.
46.H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, "Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film", Review Of Scientific Instruments, Vol. 79, pp. 054902, 2008.
47.L. Feihui and W. Wei, "Electrodeposition of BixSb2-xTey thermoelectric thin films from nitric acid and hydrochloric acid systems", Applied Surface Science, vol. 255, pp. 4225-4231, 2009
48.D. D. Frari, S. Diliberto, N. Stein, C. Boulanger and J. M. Lecuire, "Pulsed electrodeposition of (Bi1-xSbx)2Te3 thermoelectric thin films", Journal of Applied Electrochemistry, vol. 36, pp. 449-454, 2006
49.B. Luxia, W. Wei, W. Hui, "Effect of the substrate on the electrodeposition of Bi2Te3-ySey thin films", Materials Research Bulletin, vol. 43, pp. 1808-1813, 2008
50.L. Fei-Hui and W. Wei, “Electrodeposition of P-type BixSb2−xTey thermoelectric film from dimethylsulfoxide solution” , Electrochimica Acta, Vol. 55, pp. 5000–5005, 2010
51.L. Fei-Hui and W. Wei, "Optical and thermoelectric characterizations of electroplated n-Bi2(Te0.9Se0.1)3", Journal of Physics and Chemistry of Solids, Vol. 68, pp. 1902–1907, 2007
52.廖莉菱, "熱電材料應用於散熱微致冷晶片之技術開發", 台灣師範大學, 碩士論文, 2009.