研究生: |
陳佩琪 |
---|---|
論文名稱: |
第十六族碲與過渡金屬(Cr、Mo、Mn)金屬團簇化合物之合成與化性和物性研究 |
指導教授: | 謝明惠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 207 |
中文關鍵詞: | 金屬團簇物 |
英文關鍵詞: | Te, Mo, Cr, Mn |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 碲(Te)-鉻(Cr)系統的研究
將 [Te{Cr(CO)5}3]2-與HBF4或O2反應,會迅速反應生成已知的平面型化合物 [Te2{Cr(CO)5}4]2- (1),而與有機試劑ClH2C(C6H4)2CH2Cl反應則可得到新的雙聚合化合物 [H2C(C6H4)2CH2Te2{Cr(CO)5}6]2- (2)。利用 HgCl2 分別與 [Te{Cr(CO)5}n]2- (n = 2, 3) 進行反應,可成功合成出以汞橋接之雙聚合金屬團簇化合物 [HgTe2{Cr(CO)5}n] 2- (n = 6, (3); n = 4, (4)),化合物 3 亦可藉由化合物 4 與 HgCl2 試劑反應而獲得。將 [Te{Cr(CO)5}3]2- 更進一步與 Se powder反應,可成功得到一開放型結構化合物 [SeTe{Cr(CO)5}3]2- (6)。此外,我們針對新的化合物與相關的化合物做一系列的比較,並藉由分子軌域理論計算更深入探討其結果。
[2] 碲(Te)-鉻(Cr)-錳(Mn)系統的研究
將化合物 [Te2Cr2Mn2(CO)18]2- (7) 於鹼性丙酮與甲醇混合溶劑中,加熱迴流,可得一特殊混合鉻-錳金屬雙三角錐化合物[Te2CrMn2(CO)9]2- (8)。將化合物8 與 CO氣體於室溫下反應,可得到四角錐封閉型結構化合物 [Te2CrMn2(CO)10]2- (9)。化合物 9 於二氯甲烷溶劑下加熱迴流則進行逆反應而得到化合物 8。化合物8與 O2 氣體在二氯甲烷室溫下反應可生成化合物 9。將Cu(MeCN)4BF4 試劑與化合物 9 反應則得到化合物 8。此二化合物均符合18電子計算規則,然而經由SQUID磁性測量可發現,於室溫 (300 K) 時均呈現S = 1,即具有2個不成對電子,顯示出反鐵磁 (antiferromagnetism) 的現象。另外,我們也利用DFT理論計算來探討此現象。
[3] 碲(Te)-鉬(Mo)系統的研究
將 [Te2Cr3(CO)10]2- (10) 和Mo(CO)6的丙酮溶液加熱反應,不同的反應時間,可得到不同的結果:與4當量的Mo(CO)6 加熱反應2天,可得到包含2個hydride主結構為四面體新型化合物 [H2Te2Mo4(CO)12]2- (11);將反應時間縮短至1小時,則可得到開放結構混合金屬鉻、鉬新的化合物 [Te2CrMo3(CO)18]2- (12);將反應時間縮短至30分鐘,得到一已知開放結構化合物 [Te2Cr2Mo2(CO)18]2- (13)。將化合物 13 與2當量的Mo(CO)6於丙酮溶液中加熱反應可得到化合物11。而化合物10與4當量的Mo(CO)6於室溫下反應14 天,僅可得到已知化合物 13。另外,我們也利用DFT理論計算來佐證與推測實驗的過程。
Abstract
[1] Te-Cr system
[Te{Cr(CO)5}3]2- rapidly transformed to the known dimeric open cluster [Te2{Cr(CO)5}4]2- (1) upon the reaction with HBF4 or O2 while the reaction with biphenyl-containing reagent ClH2C(C6H4)2CH2Cl produced the CH2(C6H4)2CH2-bridged dimeric complex [H2C(C6H4)2CH2Te2{Cr(CO)5}6]2- (2) was produced. The reaction of [Te{Cr(CO)5}n]2- (n = 2, 3) with HgCl2 afforded the dimeric Hg-bridged metal clusters [HgTe2{Cr(CO)5}n] 2- (n = 6, (3); n = 4, (4)), respectively. While [Te{Cr(CO)5}3]2- was treated with Se powder, a new open complex [SeTe{Cr(CO)5}3]2- (6) was obtained. Moreover, the new complexes and related reactions were investigated by molecular orbital calculations at the B3LYP level of the density functional theory.
[2] Te-Cr-Mn system
Refluxing [Te2Cr2Mn2(CO)18]2- (7) in a basic acetone/MeOH solution produced the mixed-metal closo-cluster complex [Te2CrMn2(CO)9]2- (8). A novel new square pyramidal cluster, [Te2CrMn2(CO)10]2- (9) could be obtained from the slow diffusion of CO into complex 8 in dichromethane solution. Conversely, complex 9 could reconvert back to complex 8 in refluxing dichromethane solution. When complex 8 was bubbled with O2 in dichromethane at room temperature, complex 9 could also be produced. Besides, complex 9 could react with Cu(MeCN)4BF4 to form complex 8. Interestingly, [Te2CrMn2(CO)9]2- (8) and [Te2CrMn2(CO)10]2- (9) are electron-precise species and each exhibt esceptionally antiferromagnetism properties with an S = 1 (2 unpaired electrons) configuration at 300 K by SQUID analysis. We further investigated the phenomenon by molecular orbital calculations at the B3LYP level of the density functional theory.
[3] Te-Mo system
The reaction of [Te2Cr3(CO)10]2- (10) with Mo(CO)6 in various reaction conditions was systematically studied. A novel new hydrido-tedrahedral cluster [H2Te2Mo4(CO)12]2- (11) was obtained from the reacion of complex 10 with 4 eq Mo(CO)6 in refluxing acetone solution for 2 days, in which the known open-cluster [Te2Cr2Mo2(CO)18]2- (13) and the new open mixed-metal cluster [Te2CrMo3(CO)18]2- (12) were isolated as intermediates by X-ray analyses. Further refluxing of complex 13 with 2 eq Mo(CO)6 in an acetone solution could lead to the formation of the new complex 11. However, the reaction of complex 10 with 4 eq Mo(CO)6 at room temperature for a prolonged time only formed the known complex 13. These reactions were further investigated by molecular orbital calculations at the B3LYP level of the density functional theory.
6. 参考資料
1. Adams, R. D.; Captain, B.; Fu, W.; Pellechia, P. J.; Smith, M. D. Angew. Chem. Int. Ed. Engl. 2002, 41, 1951.
2. (a) Ragaini, F.; Ghitti, A.; Cenini, S. Organometallics 1999, 18, 4925. (b) Haak, S.; Neels, A.; Evans, H.; Fink, G.; Thomas, C. M. Chem.Commum. 1999, 1959. (c) Darensbourg, D. J.; Sanchez, K. M.; Reibenspies, J. H.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 7094. (d) Hidai, M.; Kuwata, S. Acc. Chem. Res. 2000, 33, 46.
3. Whitmire, K. H. J. Cluster Sci. 1991, 12, 231.
4. Knochenko, S. N.; Pushkarevsky, N. A.; Virovets, A. V.; Scheer. M. J. Chem. Soc., Dalton Trans. 2003, 581.
5. Riaz, U.; Cumow, O. J.; Curtis, M. D. J. Am. Chem. Soc. 1994, 116, 4357.
6. (a) Happe, R. P.; Winfriend, R.; Pieriek, A. J.; Albracht, S. P. J.; Bagley, K. A. Science 1997, 385, 126. (b) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.
7. Dance, I. J. Chem. Soc., Chem. Commun. 2003, 324.
8. Chen, L.; Wu, X. T.; Gao, X. C.; Zhang, W. J.; Lin, P. J. Chem. Soc., Dalton Trans. 1999, 4303.
9. Schmid, G. Angew. Chem. Int. Ed. Engl. 1978, 17, 392.
10. Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic
Chemistry, Pergamon, Oxford 1982.
11. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
12. Sekar, P.; Ibers, J. A. Inorg. Chem. 2002, 41, 450.
13. Shieh, M.; Ho, L.-F.; Jang, L.-F.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem.
Commun. 2001, 1014.
14. Seigneurin, A.; Makani, T.; Jones, D. J.; Roziere, J. J. Chem. Soc., Dalton Trans. 1987, 2111.
15. Kanatzidis, M. G.; Das, B. K. Inorg. Chem. 1995, 34, 5721.
16. Konchenko, S. N.; Virovet, A. V.; Tkachev, S. V.; Podberezskaya, N. V. Polyhedron 1997, 16, 707.
17. Shieh, M.; Ho, L.-F.; Guo, Y.-W.; Lin, S.-F.; Lin, Y.-C.; Peng, S.-M.; Liu, Y.-H. Organometallics 2003, 22, 5020.
18. Shieh, M.; Lin, S.-F.; Guo, Y.-W.; Hsu, M.-H.; Lai, Y.-W. Organometallics 2004, 23, 5182.
19. 黃國智,國立台灣師範大學博士論文,1998。
20. 游宗憲,台灣師範大學碩士論文,2001。
21. Shieh, M.; Hsu, M.-H.; Miu, C.-Y.; Lin,Y.-C. J. Organomet. Chem. 2006, 691, 966.
22. 何莉芳,台灣師範大學碩士論文,2000。
23. 林怡君,台灣師範大學碩士論文,2003。
24. 許妙行,未發表結果。
25. 林淑芬,台灣師範大學碩士論文,2001。
26. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound;
Wiley: New York, 1986.
27. Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827.
28. 謝明惠,郭玉雯,未發表結果。
29. Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Germany,
1997.
30. Boudreaux, E. A.; Mulay, L. N. Theory and Applications of Molecular Paramagnetism; Wiley-Interscience: New York, 1976.
31. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.
32. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
34. Wiberg, K. B. Tetrahedron 1968, 24, 1083.
35. (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
36. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
37. 詹莉芬,台灣師範大學碩士論文,1997。
38. Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31, 2056.
39. Stauf, S.; Reisner, C.; Tremel, W. Chem. Commun. 1996, 1749.
40. Blacque, O.; Brunner, H.; Kubicki, M. M.; Nuber, B.; Stubenhoffer, B.; Wachter, J.; Wrackmeyer, B. Angew. Chem. Int. Ed. Engl. 1997, 36, 352.
41. Flomer, W. A.; O’Neal, S. C.; Kolis, J. W., Jeter, D.; Cordes, A. W. Inorg. Chem. 1988, 27, 969.
42. (a)Marsh, R. E.; Spek, A. L. Acta Crystallogr., Sect. B: Struct.Sci. 2001, 57,
800. (b) Pasynskii, A. A.; Eremenko, I. L.; Orazsakhatov, B.; Gasanov, G. Sh.; Novotortsev, V. M.; Ellert, O. G.; Seifulina, Z. M.; Shklover, V. E.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 270, 53.
43. (a) Pasynskii, A. A.; Eremenko, I. L.; Orazsakhatov, B.; Gasanov, G. Sh.;
Shklover, V. E.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 275, 183. (b) Pasynskii, A. A.; Eremenko, I. L.; Gasanov, G. Sh.; Shklover, V. E.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 276, 349.
44. Djukic, J.-P.; Maisse, A.; Pfeffer, M.; Dotz, K. H.; Nieger, M. Eur. J. Inorg.
Chem. 1998, 1781.
45. (a) Marsh, R.E. Acta Crystallogr., Sect.B:Struct.Sci. 1997, 53, 317. (b)
Chaudhuri, P.; Birkelbach, F.; Winter, M.; Staemmler, V.; Fleischhauer, P.; Haase, W.; Florke, U.; Haupt, H.-J. J. Chem. Soc., Dalton Trans. 1994, 2313. (c) Pasynskii, A. A.; Skabitski, I. V.; Torubaev, Y. V.; Semenova, N. I.; Novotortsev, V. M.; Ellert, O. G.; Lyssenko, K. A. J. Organomet. Chem. 2003, 671, 91.
46. 謝明惠,李俊鋒,未發表結果。
47. Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin S.-F.; Ueng, C.-H. Chem. Eur. J.
2001, 7, 3152.
48. (a) Sessoli, R.; Ysai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting,
K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804. (b) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141. (c) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66.
49. Soler, M.; Wernsdorfer, W.; Abboud, K. A.; Huffman, J. C.; Davidson, E. R.;
Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 2003, 125, 3576.
50. Mironov, V. S.; Chibotaru, L. F.; Ceulemans, A. J. Am. Chem. Soc. 2003, 125,
9750.
51. (a) Low, D. M.; Jones, L. F.; Bell, A.; Brechin, E. K.; Mallah, T.; Rivi re, E.;
Teat, S. J.; McInnes, E. J. L. Angew. Chem. Int. Ed. Engl. 2003, 42, 3781. (b) Cornia, A.; Fabretti, A. C.; Garrisi, P.; Mortal, C.; Bonacchi, D.; Gatteschi, D.; Sessoli, R.; Sorace, L.; Wernsdorfer, W.; Barra, A.-L. Angew. Chem. Int. Ed. Engl. 2004, 43, 1136. (c) Ruiz, E.; Cano, J.; Alvarez, S. Chem. Eur. J. 2005, 11, 4767.
52. (a) Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdaguer, M. Inorg. Chem.
1999, 38, 229. (b) Mallah, T.; Auberger, C.; Verdaguer, M.; Veillet, P. J. Chem. Soc., Chem. Commun. 1995, 61. (c) Scuiller, A.; Mallah, T.; Verdaguer, M.; Nivorozkhin, A. New. J. Chem. 1996, 20, 1.
53. Adams, R. D.; Miao, S.; Smith, M. D.; Farach, H. Inorg. Chem. 2004, 43,
2515.
54. Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Ho, C.-H.; Peng, S.-M.; Liu,
Y.-H. Inorg. Chem. 2003, 42, 5477.
55. Brayshaw, S. K.; Green, J. C.; Hazari, N.; McIndoe, J. S.; Marken, F.;
Raithby, P. R.; Weller, A. S. Angew. Chem. Int. Ed. Engl. 2006, 45, 6005.
56. Femoni, C. M.; Iapalucci, C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord.
Chem. Rev. 2006, 250, 1580.
57. Lin, J.T.; Ellis, J. E. J. Am. Chem. Soc. 1983, 105,6252.
58. Budzichowski, T. A.; Chisholm, M. H.; Huffman, J. C.; Kramer, K. S.;
Eisenstein, O. J. Chem. Soc., Dalton Trans. 1998, 2563.
59. Burini, A.; Cotton, F. A.; Czuchajowska, J. Polyhedron. 1991, 10, 2145.
60. (a) Jaitner, P.; Wohlgenannt, W.; Gieren, A.; Betz, H.; Hubner, T. J. Organomet. Chem. 1985, 297, 281. (b) Nefedov, S. E.; Kolobkov, B. I.; Pasynskii, A. A.; Eremenko, I. L.; Sadekov, I. D.; Yanovsky, A. I.; Struchkov, Yu. T. Zh. Neorg. Khim. (Russ.) (Russ. J. Inorg. Chem.) 1992, 37, 335. (c) Song, L.-C.; Shi, Y.-C.; Zhu, W.-F.; Hu, Q.-M.; Huang, X.-Y.; Du, F.; Mao, X.-A. Organometallics 2000, 19, 156. (d) Carey, J.; Fettinger, J. C.; Poli, R.; Smith, K. M. Inorg. Chim. Acta 2000, 299, 118.
61. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
62. (a) Burke, K.; Perdew, J. P.; Wang, Y. In Electronic Density Functional
Theory: Recent Progress and New Directions; Dobson, J. F.; Vignale, G.; Das, M. P.; Eds.; Plenum: New York, 1998; pp 81-111. (b) Perdew, J. P. In Electronic Structure of Solids’91; Ziesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin, 1991; p 11. (c) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. (d) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978. (e) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533.
63. (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt,W. R.;
Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
64. (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. (d) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081. (e) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193. (f) Foresman, J. B.; Frisch, E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA; p 110.