研究生: |
胡詠善 |
---|---|
論文名稱: |
氧化釔摻鋯之堆疊高介電係數介電層應用於MOS電容之特性分析 The characteristics analysis of MOS capacitor with Zr-incorporated Y2O3 stack high-K dielectric layer |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 阮弼群 Juan, Pi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 電晶體 、高介電係數 、氧化釔 、氮化鋯 |
英文關鍵詞: | MOSFET, high-K, Y2O3, ZrN |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當電晶體的尺寸隨著趨勢逐漸微縮,傳統二氧化矽製成的閘極氧化層達到了物理極限,導致漏電流劇增。因此,高介電係數材料取代傳統二氧化矽做為閘極氧化層的文獻陸續被發表。氧化釔是一個有潛力的高介電係數材料,因為氧化釔的高介電係數(12-18)、寬的能隙(5.5 eV)、熱穩定度高,與矽的相容度很高,且跟矽的晶格不匹配的程度較低。不過氧化釔容易與矽產生擴散形成界面層。另外一方面,由於氧化鋯適合做為閘極氧化層的材料,但它的結晶溫度較低,在高溫製程後會容易有結晶的現象。基於上述,本研究選擇氧化釔做為基礎,摻雜鋯至氧化釔中,形成介電層。接著覆蓋一層氮化鋯,藉由氮化鋯的特性,做為一層阻擋層,希望能減少擴散的產生。最後鍍上一層鈦金屬,在不同溫度的快速熱退火之後,量測該電容器的電性與物性。實驗結果顯示摻雜鋯後,會使高介電係數介電層在高溫製程後會有結晶的現象產生,導致薄膜表面較粗糙;覆蓋一層氮化鋯,可以減少擴散現象的發生,但如果氮化鋯的厚度不足,還是會有擴散產生。
As the dimension of metal-oxide-semiconductor field effect transistor (MOSFET) devices continues to scale down, the gate leakage current increases accordingly because the traditional gate oxide gradually approaches its physical limit. Therefore, high-K materials have been proposed to replace SiO2 in the literature.
Y2O3 is a promising high-K material because of its high dielectric constant (12-18), wide band gap (5.5 eV), stable thermal stability, chemical compatibility with Si and low lattice mismatch between Y2O3 and Si. However it is easy to form the interfacial layer because of the inter-diffusion between Y2O3 and Si. On the other hand, ZrO2 has also been reported to be a suitable material for gate dielectric layer though it starts to crystallize after high temperature process (ie. low crystallization temperature). Based on the above understanding, Zr is introduced into Y2O3 to form the gate dielectric layer, and ZrN is subsequently deposited to suppress the inter-diffusion. Finally, metal Ti is deposited to form the gate. In this work, electrical characteristics and physical properties have been studied for the samples after rapid thermal annealing at different temperatures.
The experimental results show that the Zr-incorporated Y2O3 thin film crystallizes and results in a rougher surface after a high temperature process. Moreover the ZrN layer can suppress inter-diffusion; however, the inter-diffusion still occurs if the ZrN layer is not thick enough.
[1] S.M. Sze and K.K. Ng, “Physics of SemiconductorDevices”, 3rd ed., Wiley, New York, (2007)
[2] 劉傳璽, 陳進來, “半導體元件物理與製程-理論與實務”, 五南圖書, (2008)
[3] 張俊彥, “積體電路製程及設備技術手冊”, 中華民國產業科技發展協會和台灣電子材料與元件協會, (2003)
[4] D.A. Neamen, “Fundamentals of Semiconductor Physics and Devices”, The McGraw Hill Companies, (2003)
[5] B.E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”, IEEE Transactions on Electron Devices, 27, pp. 606-608, (1980)
[6] B.E. Deal, M. Sklar, A.S. Grove and E.H. Snow, “Characteristics of the Surface-State Charge (QSS) of Thermally Oxidized Silicon”, J. Electrochem. Soc. , 114, pp. 266-274, (1967)
[7] J. Robertson, “High Dielectric Constant Gate Oxides for Metal Oxide Si Transistor”, Rep. Prog. Phys., 69, pp. 327-396 (2006)
[8] F. Paumier and R.J. Gaboriaud, “Interfacial Reactions in Y2O3 Thin Films Deposited on Si (100)”, Thin Solid Films , 441, pp. 307-310, (2003)
[9] J.J. Chambers, B.W. Busch, W.H. Schulte, T. Gustafsson, E. Garfunkel, S. Wang, D.M. Maher, T.M. Klein and G.N. Parsons, “Effects of Surface Pretreatments on Interface Structure during Formation of Ultra-Thin Yttrium Silicate Dielectric Films on Silicon”, Applied Surface Science, 181, pp. 78-93, (2001)
[10] Z.M. Wang, J.X. Wu, Q. Fang and J.Y. Zhang, “Photoemission Study of Interfacial Reactions during Annealing of Ultrathin Yttrium on SiO2/ Si (100)”, Applied Surface Science, 239, pp. 464-469, (2005)
[11] C.H. Liu and F.C. Chiu, “Electrical Characterization of ZrO2/ Si Interface Properties in MOSFETs with ZrO2 Gate Dielectrics”, IEEE Electron Device Letters, 26, pp. 62-64, (2007)
[12] F.C. Chiu, Z.H. Lin, C.W. Chang, C.C. Wang, K.F. Chuang, C.Y. Huang, Y.M. Lee and H.L. Huang, “Electron Conduction Mechanism and Band Diagram of Sputter-Deposited Al/ ZrO2/ Si Structure”, Journal of Applied Physics, 97, pp. 034506-1-4, (2005)
[13] K. Matsunouchi, N. Komatsu, C. Kimura, H. Aoki and T. Sugino, “Growth and Properties of YAlO Film Synthesized by RF Magnetron Sputtering”, Applied Surface Science, 255, pp. 5021-5024, (2009)
[14] K. Nakagawa, K. Miyauchi, K. Kakushima, T. Hattori, K. Tsutsui and H. Iwai, “The Effects of Y2O3 Buffer Layer for La2O3 Gate Dielectric Film”, Proceedings of ESSDERC, Grenoble, France, pp.387-390, (2005)
[15] P. Ahmet, K. Nakagawa, K. Kakushima, H. Nohira, K. Tsutsui, N. Sugii, T. Hattori and H. Iwai, “Electrical Characteristics of MOSFETs with La2O3/ Y2O3 Gate Stack”, Microelectronics Reliability, 48, pp. 1769-1771, (2008)
[16] Y.E. Hong, Y.S. Kim, K. Do, D. Lee and D.H. Ko, “Thermal Stability of Al- and Zr-Doped HfO2 Thin Films Grown by Direct Current Magnetron Sputtering” , J. Vac. Sci. Technol. , 23, pp. 1013-1018, (2005)
[17] H.Y. Yu, J.J. Kang, C. Ren, J.D. Chen, Y.T. Hou, C. Shen, M.F. Li, D.S.H. Chan, K.L. Bera, C.H. Tung and D.L. Kwong, “Robust High-Quality HfN-HfO2 Gate Stack for Advanced MOS Device Applications”, IEEE Electron Device Letters , 25,pp. 4.5.1-4.5.4 (2004)
[18] 鄭晃忠, 劉傳璽, “新世代積體電路製程技術”, 東華書局, (2011)
[19] 程金保, “Thin Film Engineering and Analysis Technology”
[20] 鄭信民, 林麗娟, “X光繞射應用簡介”, 工業材料雜誌,181期, (2000)
[21] 汪建民, “材料分析”, 中國材料科學學會, (1991)
[22] 王明光, 王敏昭, “實用儀器分析” , 合記圖書, (2003)
[23] H.W. Chen, F.C. Chiu, C.H. Liu, S.Y. Chen, H.S. Huang, P.C. Juan and H.L. Hwang, “Interface Characterization and Current Conduction in HfO2-gated MOS capacitors”, Applied Surface Science, 254, pp. 6112–6115, (2008)
[24] W. Huang, G.P. Ru, C. Detavernier, R.L. Van Meirhaeghe, Y.L. Jiang, X.P. Qu and B.Z. Li, “Yttrium Silicide Formation and Its Contact Properties on Si(100)”, Microelectronic Engineering, 85, pp. 131-135, (2008)
[25] X. Cheng, Z. Qi, G. Zhang, H. Zhou, W. Zhang and M. Yin, “Growth and Characterization of Y2O3 Thin Films”, Physica B, 404, pp. 146-149, (2009)
[26] M. Španková, I. Vávra, Š. Chromik, S. Harasek, R. Lupták, J. Šoltýs and K. Hušeková, “Structural Properties of Y2O3 Thin Film Grown on Si(1 0 0) and Si(1 1 1) Substrates”, Materials Science Engineering B, 116, pp. 30-33, (2005)