研究生: |
陳嬿伊 Yan-I Chang |
---|---|
論文名稱: |
血青素模型錯合物的研究:N,N-雙(2-啶甲基)胺衍生三牙基之二價銅錯合物的合成及鍵結性質研究 |
指導教授: |
蘇展政
Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 血青素模型錯合物 、啶過氧雙銅錯合物 |
英文關鍵詞: | Hemocyanin Model Complex, Pyridine Peroxo Dicoppeer Complex |
論文種類: | 學術論文 |
相關次數: | 點閱:265 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解血青素金屬活性中心如何與氧氣進行可逆反應,本研究合成五個三牙基配子,N,N-雙(2-啶甲基)苯胺(Phdipica)、N,N-雙(2-啶甲基)-2-氫氧苯胺(HOPhdipica)、N,N-雙(2-啶甲基)三苯甲基胺(Ph3Cdipica)、N,N-雙(2-唑乙基)苯甲基胺(PhCH2dipyra)、N,N-雙(2-唑乙基)-2-氫氧苯胺(HOPhdipyra),並以Phdipica、HOPhdipica的一價銅錯合物在室溫及低溫下與氧反應,Ph3Cdipica、PhCH2dipyra、HOPhdipyra的一價銅錯合物在室
溫下與氧反應,以電子吸收光譜判斷反應產物。
根據電子吸收光譜鑑定,Phdipica一價銅錯合物在室溫下可形成橋接過氧雙銅錯合物,而HOPhdipica一價銅錯合物在低溫(-30
℃)下亦可形成橋接過氧雙銅錯合物。
本研究亦以N,N-雙(2-啶甲基)苯胺(Phdipica)、N,N-雙(2-啶甲基)-2-氫氧苯胺(HOPhdipica),為主要配子,合成了下列錯合物:[Cu(Phdipica)2](ClO4)2∙H2O、[Cu(Phdipica)(phen)](ClO4)2、[Cu(Phdipica)(bipy)](ClO4)2、[Cu(Phdipica)(acac)](ClO4)∙1.5H2O、[Cu(HOPhdipica)2](ClO4)2∙2H2O、[Cu2(OPhdipica)(phen)2](ClO4)3∙H2O、[Cu2(OPhdipica)(bipy)2](ClO4)3、[Cu(Ph3Cdipica)Br]、[Cu(dipica)Br2],其中phen為1,10-二氮雜菲、bipy為2,2’-聯啶、acac為2,4-戊二酮。利用元素分析、紅外光光譜、紫外光-可見光吸收光譜、電子順磁共振光譜及
X-光單晶結構解析等方法,完成錯合物的結構鑑定及鍵結性質之探討。
目前己有X-光單晶結構解析的錯合物有:
1.[Cu(dipica)Br2]
屬於單斜晶系(Monoclinic),空間群為P 21/m,晶格常數a = 6.774(1) Å;b = 13.422(2) Å;c = 8.269(2) Å; = 90; = 104.836(3) ; = 90,每單位晶格內含有2個分子(Z = 2),精算值R = 0.0473,Rw = 0.1044。結
構為四角錐形體,dipica和一個溴構成基底面,另一個溴接於軸上。
2. [Cu2(dipica)2(OH)(H2O)](ClO4)3
屬於單斜晶系(Monoclinic),空間群為C 2/c,晶格常數a = 24.571(8) Å;b = 8.562(3) Å;c = 15.341(5) Å; = 90.000(7) ,每單位晶格內含有4個分子(Z = 4),精算值R = 0.1025,Rw = 0.2071。由dipica和一個OH-或H2O構成平面四方形。
綜合本研究得知,Phdipica、HOPhdipica為-acceptor性質的配子,在一系列錯合物中為面形(facial)形式與銅鍵結,而Ph3Cdipica亦可以採用面形的鍵結模式穩定一價銅,而形成[Cu(Ph3Cdipica)Br]。
In order to reveal the oxygen-carrying properties of hemocyanins , linear tridentate ligands including Phdipica (N,N-bis(2-pyridylmethyl)phenylamine), HOPhdipica (N,N-bis(2-pyridylmethyl)-2’-hydroxyphenylamine), Ph3Cdipica (N,N-bis(2-pyridylmethyl)triphenylmethylamine), PhCH2dipyra (N,N-bis(2-pyrazolylmethyl)benzylamine), and HOPhdipyra (N,N-bis(2-pyrazolylmethyl)-2’-hydroxyphenylamine) have been synthesized and charactered. The reactions of O2 with Cu(Ⅰ) complexes coordinated by these tridentate ligands at either room temp or low temp (-30℃) have been investigated. Based on the electronic spectral data [Cu(Phdipica)]+ at room temp and [Cu(HOPhdipica)]+ at low temp, are likely forming -2:2-peroxo complexes.
Nine mixed ligand copper (Ⅱ) complexes, [Cu(Phdipica)2](ClO4)2∙H2O、[Cu(Phdipica)(phen)](ClO4)2、[Cu(Phdipica)(bipy)](ClO4)2、[Cu(Phdipica)(acac)](ClO4)∙1.5H2O、[Cu(HOPhdipica)2](ClO4)2∙2H2O、[Cu2(OPhdipica)(phen)2](ClO4)3∙H2O、[Cu2(OPhdipica)(bipy)2](ClO4)3、[Cu(Ph3Cdipica)Br]、[Cu(dipica)Br2], where phen = 1,10-phenanthroline, bipy = 2.2’-bipyridine, acac = acetylacetonate, have been synthesized and characterized by elemental analyses, infrared, electronic absorption, and EPR spectroscopic
measurements.
By single-crystal X-ray diffraction method, the crystal and molecular structures of [Cu(dipica)Br2] and [Cu2(dipica)2(OH)(H2O)](ClO4)3 have been determined. The crystal data of these complexes are described below:
1. [Cu(dipica)Br2] crystallizes in the monoclinic space group P 21/m with a = 6.774(1) Å;b = 13.422(2) Å;c = 8.269(2) Å; = 90; = 104.836(3) ; = 90, Z = 2, R = 0.0473, Rw = 0.1044.
2. [Cu2(dipica)2(OH)(H2O)](ClO4)3 crystallizes in the monoclinic space group C2/c with a = 24.571(8) Å;b = 8.562(3) Å;c = 15.341(5) Å; = 90.000(7) , Z = 4, R = 0.1025, Rw = 0.2071.
In conclusion, both Phdipica and HOPhdipica tridentate ligands bind to copper d orbitals as -acceptors, and tend to retain a facial configuration. The stable copper(Ⅰ) complex, [Cu(Ph3Cdipica)Br], having a facial Ph3Cdipica was obtained by the reaction of Ph3Cdipica with CuBr2.
1. Magnus, K. A.; Ton-That, H.; Carpenter, J. E. in Bioinorganic Chemistry of Copper , Karlin, K. D.; Tyeklar, Z. Eds., Chapman & Hall, New York, 1993, pp143-150.
2. (a) Dooley, D. M.; Scott, R. A.; Ellinhaus, J.; Solomon, E. I.; Gray, H. B. Proc. Natl. Acas. Sci. U. S. A., 1978, 75, 3019.; (b) Moss, T. H.; Gould, D. C.; Ehrenberg, A.; Loehr, J. S.; Mason, H. S. Biochemistry, 1973, 12, 2444.; (c)Solomon, E. I.; Dooley, D. M.; Wang, R. H.; Gray, H. B.; Cerdonio, M.; Mogno, F.; Romani, G. L. J. Am. Chem. Soc., 1976, 98, 1029.
3. (a) Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Toriumi, K. J. Am. Chem. Soc., 1989, 111, 8975. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc., 1992, 114, 1277.
4. T. N. Sorrell, W. E. Allen and P. S. White, Inorg. Chem., 1995, 34, 952-960.
5. E. Pidcock, S. DeBeer, H. V. Obias, B. Hedman, K. O. Hodgson, K. D. Karlin, and E. I. Solomon, J. Am. Chem. Soc., 1999, 121, 1870-1878.
6. (a) W. B. Tolman, Acc, Chem. Res., 1997, 30, 227-237.; (b) J. Cahoy, P. L. Holland, and W. B. Tolman, Inorg. Chem., 1999, 38, 2161-2168.
7. Pidcock, E.; Obias, H. V.; Abe, M.; Liang, H.-C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1299-1308.
8. Karlin, K. D.; Tyeklar, Z.; Farooq, A.; Haka, M. S.; Ghosh, P.; Gruse, R. W.; Gultneh, Y.; Hayes, J. C.; Zubieta, J. Inorg. Chem. 1992, 31, 1436-1451.
9. Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Meyer, G. J.; Farooq, A.; Gultneh, Y.; Hayes, J. C.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 1196-1207.
10. Blackburn, N. J.; Strange, R. W.; Farooq, A.; Haka, M. S.; Karlin, K. D. J. Am. Chem. Soc. 1988, 110, 4263-4272.
11. Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.; Zuberbühler, A. D. J. Am. Chem. Soc. 1994, 116, 1324-1336.
12. Pidcock, E.; Obias, H. V.; Xin Zhang, C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841-7847.
13. Karlin, K. D.; Cruse, R. W.; Gultneh, Y.; Farooq, A.; Hayes, J. C.; Zubieta, J. J. Am. Chem. Soc. 1987, 109, 2668-2679.
14. Nasir, M. S.; Cohen, B. I.; Karlin, K. D. J. Am. Chem. Soc. 1992, 114, 2482-2494.
15. Karlin, K. D.; Lee, D.-H.; Kaderli, S.; Zuberbühler, A. D. Chem. Commum. 1997, 475-476.
16. Lee, D.-H.; Wei, N.; Murthy, N. N.; Tyeklar, z.; Karlin, K. D.; Kaderli, S.; Jung, B.; Zuberbühler, A. D. J. Am. Chem. Soc. 1995, 117, 12498-12513.
17. Karlin, K. D.; Wei, N.; Jung, B.; Kaderli, S.; Niklaus, P.; Zuberbühler, A. D. J. Am. Chem. Soc. 1993, 115, 9506-9514.
18. Wei, N.; Murthy, N. N.; Chen, Q.; Zubieta, J.; Karlin, K. D. Inorg. Chem. 1994, 33, 1953-1965.
19. Sanyal, I.; Mahroof-Tahir, M.; Nasir, M. S.; Ghosh, P.; Cohen, B. I.; Gultneh, Y.; Cruse, R. W.; Farooq, A.; Karlin, K. D.; Liu, S.; Zubieta, J. Inorg. Chem. 1992, 31, 4322-4332.
20. Hung, G.-S.; Lai, J.-K.; Ueng, C.-H.; Su, C.-C. Trans. Metal Chem. 2000, 25, 84-92.
21. Su, C.-C.; Huang, G.-S.; Wang, S.-L.; Liao, F.-L.; Lin, K.-J., J. Coord. Chem., 2000, 49, 211-216.
22. 戴彩雲,國立台灣師範大學研究所碩士論文,1999.
23. Purcell, K. F.; Kotz, J. C., in Inorganic Chemistry, Saunders, W. B. Philadelphia, 1977.
24. Musker, W. K.; Huaasim, M. S., Inorg. Chem. Nucl. Chem. 1967, 3, 271.
25. Olsen, C. D.; Basu, G.; Belford, R. L., J. Coord. Chem. 1971, 1, 17.
26. Harrison, D. H.; Kebbedy, D.; Hathaway, B., J. Inorg. Nucl. Chem. Lett., 1981, 17, 87.
27. Hathaway, B. J.; Billing, D. E., Coord. Chem. Rev., 1970, 5, 143.
28. Martens, C. F.; Schenning, A. P. H. J.; Feiters, M. C.; Berens, H. W.; Linden, J. G. M.; Admiraal, G.; Beurskens, P. T.; Kooijman, H.; Spek, A. L.; Nolte, R. J. M. Inorg. Chem. 1995, 34, 4735-4744.
29. Thornton, D. A.; Watkins, G. M. J. Coord. Chem. 1992, 25, 299.
30. Dahl, L. H.; as quoted by Robertson, I. And Truter, M. R., J. Chem. Soc. (A) 1967, 309.
31. Su, C.-C.; Wu, S.-P.; Wu, C.-Y.; Chang, T.-Y. Polyhedron, 1995, 14, 267.
32. Y. Saito, J. Takemoto, B. Hutchinson, And K. Nakamoto, Inorg. Chem. 1970, 11, 2003.
33. Su, C.-C.; Lin, Y.-L.; Liu, S.-J.; Chang, T.-H.; Wang, S.-L.; Liao, F.-L. Polyhedron, 1993, 12, 2687.
34. Aggarual, R. C.; Singh, R. P. Inorg. Chem. 1985, 20,2794.
35. Siddiqui, S.; Shepherd, R. E. Inorg. Chem. 1986, 25, 3869-3876.
36. D. W. Smith, J. Chem. Soc. (A), 1970, 3108-3120.
37. D. W. Smith, J. Chem. Soc. (A), 1970, 1498-1503.
38. Boudreaux, E. A.; Mulay, L. N. Theory and Application of Molecular Paramagnetism; Wiley: New York, 1976.
39. 黃進松,國立台灣師範大學研究所博士論文,1999.
40. Volbeda, A.; Hol, W. G. J. J. Mol. Biol. 1989, 206, 531.
41. Solomon, E. I.; Baldwin, M. J.; Lowery, M. Chem. Rev. 1992, 92, 521.
42. (a) Freedman, T. B.; Loehr, J. S.; Loehr, T. M. J. Am. Chem. Soc. 1976, 98, 2809. (b) Thamann, T. J.; Loehr, J. S.; Loehr, T. M. J. Am. Chem. Soc. 1977, 99, 4187.
43. Himmelwright, R. S.; Eickman, N. C.; Lubein, C. D.; Solomon, E. I. J. Am. Chem. Soc. 1980, 102, 5378.