研究生: |
葉佳傑 Yeh, Chia-Chieh |
---|---|
論文名稱: |
以延伸整合型科技接受模式探討影響消費者使用虛擬試穿之因素 Using UTAUT2 Model to Explore the Factors Influencing Consumers’Use of Virtual Try-On |
指導教授: |
施人英
Shih, Jen-Ying |
口試委員: |
施人英
Shih, Jen-Ying 陳文華 Chen, Wun-Hwa 周世玉 Chou, Shih-Yu |
口試日期: | 2025/01/21 |
學位類別: |
碩士 Master |
系所名稱: |
全球經營與策略研究所 Graduate Institute of Global Business and Strategy |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 虛擬試穿 、延伸整合型科技接受模式 、人格特質 |
英文關鍵詞: | Virtual Try-On, UTAUT2, Personality Traits |
DOI URL: | http://doi.org/10.6345/NTNU202500341 |
論文種類: | 學術論文 |
相關次數: | 點閱:22 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新冠疫情期間,政府限制實體店面人流,促使服飾業者轉向線上通路,並改變消費者購物習慣,使網路購物成為主要消費模式。然而,消費者在網路購物時會擔心衣服不適合自己,虛擬試穿則能模擬上身效果並提升購物信心。即使疫情回穩後,消費者依然持續使用網路購物,展現出網路購物成為日常消費習慣的趨勢,在此背景下,虛擬試穿逐漸成為提升購物體驗與促進虛實整合的關鍵,到底有哪些因素會影響消費者使用虛擬試穿?成為本研究動機。本研究採用延伸整合型科技接受模式(UTAUT2),以使用過虛擬試穿的臺灣消費者作為研究對象,但考量到目前臺灣虛擬試穿並不常見,本研究會一同納入「沒有使用過但有意願想要使用」之消費者,探討影響臺灣消費者對於虛擬試穿之行為意圖與實際行為。除了原先UTAUT2架構中的構面外,本研究從不同面向切入,剔除經驗並加入人格特質作為新干擾變數。本研究採便利抽樣進行樣本收集,透過Google線上表單發放問卷,收回有效問卷277份,並透過統計軟體SmartPLS 4.1進行測量模型分析,本研究各構面與題項皆符合信度與效度衡量標準,後續經結構模型分析結果顯示,對於有使用過虛擬試穿的消費者,績效預期、努力預期、享樂動機及習慣顯著影響其行為意圖,而行為意圖進一步影響實際使用;對於沒使用過虛擬試穿但有意願使用的消費者,績效預期與社會影響的影響較為顯著。此外,本研究發現人格特質並未產生干擾效果,僅有性別在習慣對於使用虛擬試穿的行為意圖之路徑有干擾效果。本研究根據分析結果提出研究結論與建議,為企業對於虛擬試穿技術的推廣提供實務建議。
During the COVID-19 pandemic, government restrictions on physical store traffic prompted apparel retailers to shift to online channels, altering consumer shopping habits and making online shopping a primary consumption mode. However, consumers often worry that clothes purchased online may not fit well, and virtual fitting rooms have emerged as a key solution to simulate try-on effects and boost shopping confidence. Even after the pandemic stabilized, consumers continued using online shopping, indicating that it has become a daily habit. Against this backdrop, virtual fitting rooms have gradually become a crucial tool for enhancing shopping experiences and facilitating the integration of online and offline channels. What factors influence consumers' use of virtual fitting rooms? This question forms the motivation of this study. This study adopts the extended Unified Theory of Acceptance and Use of Technology(UTAUT2)and focuses on Taiwanese consumers who have used virtual fitting rooms. Considering that virtual fitting rooms are not yet widely available in Taiwan, the study also includes "those who have not used but are willing to use" as a research sample to explore the factors affecting Taiwanese consumers' behavioral intention and actual usage of virtual fitting rooms. Besides the original UTAUT2 constructs, this study adopts a different perspective by excluding experience and adding personality traits as a new moderating variable. This study employed convenience sampling to collect data through Google Forms, resulting in 277 valid responses. Statistical analysis was conducted using SmartPLS 4.1 to evaluate the measurement model, and all constructs and items met the reliability and validity criteria. Subsequent structural model analysis revealed that, for consumers who have used virtual try-on technology, performance expectancy, effort expectancy, hedonic motivation, and habit significantly influenced their behavioral intention, which in turn affected actual usage. For consumers who have not used virtual try-on technology but are willing to use it, performance expectancy and social influence were found to have more significant effects. Furthermore, the study found that personality traits did not exhibit a moderating effect; only gender showed a moderating effect on the path between habit and behavioral intention to use virtual try-on technology. Based on the analysis results, this study provides conclusions and recommendations, offering practical insights for businesses in promoting virtual try-on technology.
Vraig (2023)。誰發明了虛擬實境?揭開 VR 的誕生面紗。取自https://www.binance.com/zh-TC/square/post/666548
王功成 (2021)。以科技接受模型探討虛擬試衣間結合網路購物影響Z世代消費者的購買意願之研究 (未出版碩士論文)。輔仁大學,新北市。
朱海成 (2023)。電子商務概論與前瞻(第三版):後疫情之跨境電商、行動商務、大數據。臺北:碁峰。
李宗儒 (2007)。網路行銷與電子商務。臺中:滄海。
沈愛玲 (2011)。台灣零售業虛實整合商業模式研究: 以7-11與7net為例 (未出版碩士論文)。國立交通大學,新竹市。
林仁宗 (2001)。實體通路與虛擬通路競合關係與發展契機之研究─以網路購物市場發展為例 (未出版碩士論文)。國立臺灣大學,臺北市。
邱皓政 (2011)。當PLS遇上SEM:議題與對話。αβγ量化研究學刊,3(1),20-53。https://www.airitilibrary.com/Article/Detail?DocID=P20110516001-201106-201109140005-201109140005-20-53
益盛科技軟體有限公司 (2024)。什麼是OMO,O2O, B2B, B2C, C2C, C2B, B2E?。取自https://des13.com/news/ecommerce/461-b2b-b2c-c2c-c2b-b2e.html
張世昌 (2003)。以創新觀點探討電子實虛整合經營模式與績效關係 (未出版碩士論文)。銘傳大學,桃園市。
張愛華、蕭丞傑 (2012)。消費者行動服務使用意願之研究:跨服務與跨使用者之比較。中山管理評論,20(2),603-635。https://doi.org/10.6160/2012.06.05
許愷茵 (2022)。虛實整合經營模式:關係行銷對購買意願影響之探討 (未出版碩士論文)。國立臺中教育大學,臺中市。
陳君行 (2010)。虛擬試衣間科技對消費者網路購買意願影響之研究 (未出版碩士論文)。輔仁大學,新北市。
陳建鈞 (2023)。UNIQLO、Zara、H&M跨過疫情低谷!三大快時尚巨頭在痛苦中走上哪條變革之路?。取自https://www.bnext.com.tw/article/59803/uniqlo-zara-hm-fast-fashion-coronavirus
彭台光、高月慈、林鉦棽 (2006)。管理研究中的共同方法變異:問題本質、影響、測試和補救。管理學報,23(1),77-98。https://doi.org/10.6504/JOM.2006.23.01.05
曾碧美 (2014)。從虛實整合觀點探討關係行銷及科技接受模式對顧客忠誠度之研究 (未出版碩士論文)。輔仁大學,新北市。
華盛通 (2022)。Snap與亞馬遜破紀錄合作,萬億市場的祕密就快藏不住了。取自https://www.hstong.com/news/hk/detail/22112111031429781
黃啟倫 (2011)。網路服飾平台之虛擬試衣體驗研究 (未出版碩士論文)。臺北市立教育大學,臺北市。
黃華泰 (2001)。網站經營模式與企業實體價值鏈整合之探討 (未出版碩士論文)。銘傳大學,桃園市。
經濟部商業司 (2011)。2011中華民國電子商務年鑑。
經濟部統計處 (2023)。產業經濟統計簡訊《436》。取自https://www.moea.gov.tw/mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=15899
達小編 (2023)。中國阿里巴巴推出虛擬模特兒試衣技術 Outfit Anyone 只要有一張照片就可以更換衣服還能夠動起來。取自https://www.kocpc.com.tw/archives/524891
維基百科。虛擬實境。上網日期:113年8月5日。取自https://zh.wikipedia.org/zh-tw/%E8%99%9A%E6%8B%9F%E7%8E%B0%E5%AE%9E
維基百科。擴增實境。上網日期:113年8月19日。取自https://zh.wikipedia.org/zh-tw/%E6%93%B4%E5%A2%9E%E5%AF%A6%E5%A2%83
蔡雨芹 (2023)。Consumers' Purchase Intention by Utilizing the Virtual Fitting Rooms: An Application of Technology Acceptance Model and Innovation Diffusion Theory (未出版碩士論文)。輔仁大學,新北市。
謝德鑫、周彩豔、李芳、劉彥麟 (2021) 。虛擬試衣技術在跨境電商的應用與商業模式創新探討。商業創新期刊,3(1),73-84。
韓繼成 (2002)。國民中學訓導人員角色壓力、人格特質與工作滿意度的關係之研究 (未出版碩士論文)。國立彰化師範大學,彰化市。
Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11-39). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69746-3_2
Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888
Al-Adwan, A. S., Yaseen, H., Alsoud, A., Abousweilem, F., & Al-Rahmi, W. M. (2022). Novel extension of the UTAUT model to understand continued usage intention of learning management systems: the role of learning tradition. Education and Information Technologies, 27(3), 3567-3593. https://doi.org/10.1007/s10639-021-10758-y
Allport, G. W. (1937). Personality: A Psychological Interpretation. NY: Holt, Rinehart & Winston.
Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355
Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice Hall.
Beck, M., & Crié, D. (2018). I virtually try it … I want it ! Virtual Fitting Room: A tool to increase on-line and off-line exploratory behavior, patronage and purchase intentions. Journal of Retailing and Consumer Services, 40, 279-286. https://doi.org/https://doi.org/10.1016/j.jretconser.2016.08.006
Bloch, M., Pigneur, Y., & Segev, A. (1996). On the road of electronic commerce-a Business value framework, Gaining competitive advantage and some research issues. Paris: Université de Lausanne, Ecole des Hautes Etudes Commerciales/Institut L’Informatique et Organisation.
Burdea, G. & Coiffet, P. (1994). Virtual reality technology. NY: Wiley-Interscience.
Cattell, R. B. (1946). Personality structure and measurement. British Journal of Psychology. General Section, 36(3), 159-174. https://doi.org/10.1111/j.2044-8295.1946.tb01117.x
Charbonnier, C., & Lo, C. (2006). VIRTUAL MIRROR: A real-time motion capture application for virtual-try-on.
Chen, L., Jia, J., & Wu, C. (2023). Factors influencing the behavioral intention to use contactless financial services in the banking industry: An application and extension of UTAUT model [Original Research]. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1096709
Costa, P. T., & McCrae, R. R. (1985). The NEO Personality Inventory manual. Odessa, FL: Psychological Assessment Resources.
Costa, P. T., & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
Devaraj, S., Easley, R. F., & Crant, J. M. (2008). How does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93–105. https://doi.org/10.1287/isre.1070.0153
Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.
Fiske, D. W. (1949). Consistency of the factorial structures of personality ratings from different sources. The Journal of Abnormal and Social Psychology, 44(3), 329–344. https://doi.org/10.1037/h0057198
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
García de Blanes Sebastián, M., Sarmiento Guede, J. R., Azuara Grande, A., & Filipe, A. F. (2024). UTAUT-2 predictors and satisfaction: implications for mobile-learning adoption among university students. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12927-1
Goldberg, L. (1981). Language and Individual Differences: The Search for Universals in Personality Lexicons. In L. Wheeler (Ed.), Review of Personality and Social Psychology (pp. 141-165). Beverly Hills, CA: Sage Publication.
Grewal, D., Roggeveen, A., & Nordfält, J. (2017). The Future of Retailing. Journal of Retailing, 93. https://doi.org/10.1016/j.jretai.2016.12.008
Gulati, R., & Garino, J. (2000). Get the Right Mix of Bricks & Clicks. Harvard business review, 78, 107-114, 214.
He, Y., Mun, S., & Yo, C. (2022). VR and AR in the digital world: The impacts on consumer purchasing intentions. BCP Business & Management, 20, 1047-1054. https://doi.org/10.54691/bcpbm.v20i.1098
Herbert, T. T. (1976). Dimensions of Organizational Behavior. NY: Collier Macmillan.
Hair, J. F., Black, W. C., Babin, B. J. et al. (2010). Multivariate Data Analysis (7th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Huang, T.-L., & Liao, S. (2015). A model of acceptance of augmented-reality interactive technology: the moderating role of cognitive innovativeness. Electronic Commerce Research, 15(2), 269-295. https://doi.org/10.1007/s10660-014-9163-2
Javornik, A. (2016). Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour. Journal of Retailing and Consumer Services, 30, 252-261. https://doi.org/10.1016/j.jretconser.2016.02.004
Kalakota, R., & Whinston, A. B. (1997). Electronic Commerce: A Manager's Guide. MA: Addison-Wesley.
Kalawsky, R. S., Graphics, A. G. o. C., Project, A. G. o. C. G. S., Applications, S. I. f. M., & Committee, H. E. F. C. J. I. S. (1996). Exploiting Virtual Reality Techniques in Education and Training: Technological Issues. Support Initiative for Multimedia Applications Advisory Group on Computer Graphics.
Kim-Vick, J., & Park, J. (2005). A consumer shopping channel extension model: Attitude shift toward the online store. Journal of Fashion Marketing and Management, 9, 106-121. https://doi.org/10.1108/13612020510586433
KMPG (2020). Responding to crises and changing consumer behaviour. Retrieved from https://kpmg.com/tw/en/home/insights/2020/03/responding-to-crises-and-changing-consumer-behaviour.html
McElroy, J. C., Hendrickson, A. R., Townsend, A. M., & DeMarie, S. M. (2007). Dispositional Factors in Internet Use: Personality versus Cognitive Style. MIS Quarterly, 31(4), 809–820. https://doi.org/10.2307/25148821
McKinsey & Company (2020). The State of Fashion 2021. Retrieved from https://www.mckinsey.com/~/media/mckinsey/industries/retail/our%20insights/state%20of%20fashion/2021/the-state-of-fashion-2021-vf.pdf
Milgram, P., & Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Information Systems, vol. E77-D, no. 12, 1321-1329.
Mouakket, S. (2009). The effect of exogenous factors on the Technology Acceptance Model for online shopping in the UAE. IJEB, 7, 491-511. https://doi.org/10.1504/IJEB.2009.028153
Nunnally, J. C. (1978). An Overview of Psychological Measurement. In B. B. Wolman (Ed.), Clinical Diagnosis of Mental Disorders: A Handbook (pp. 97-146). Springer US. https://doi.org/10.1007/978-1-4684-2490-4_4
Ngoh, C.-l., & Groening, C. (2022). The effect of COVID-19 on consumers’ channel shopping behaviors: A segmentation study. Journal of Retailing and Consumer Services, 68, 103065. https://doi.org/10.1016/j.jretconser.2022.103065
Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: Replicated factor structure in peer nomination personality ratings. The Journal of Abnormal and Social Psychology, 66(6), 574–583. https://doi.org/10.1037/h0040291
Pantano, E., Pizzi, G., Scarpi, D., & Dennis, C. (2020). Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak. Journal of Business Research, 116, 209-213. https://doi.org/https://doi.org/10.1016/j.jbusres.2020.05.036
Rogers, E.M. (1962). Diffusion of Innovations. Free Press, New York.
Silvestri, B. (2022). How Virtual and Augmented Reality Are Reshaping the Fashion Industry During the Covid-19 Pandemic. In A. S. Pillai & G. Guazzaroni (Eds.), Extended Reality Usage During COVID 19 Pandemic (pp. 39-54). Springer International Publishing. https://doi.org/10.1007/978-3-030-91394-6_3
Statista (2023). Cross-border business-to-consumer (B2C) e-commerce market value worldwide in 2021 and 2030. Retrieved from https://www.statista.com/statistics/1296796/global-cross-border-ecommerce-market-value/
Steinfield, C., Bouwman, H., & Adelaar, T. (2002). The Dynamics of Click-and-Mortar Electronic Commerce: Opportunities and Management Strategies. International Journal of Electronic Commerce, 7(1), 93-119.
Svendsen, G. B., Johnsen, J.-A. K., Almås-Sørensen, L., & Vittersø, J. (2013). Personality and technology acceptance: the influence of personality factors on the core constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32, 323 - 334.
Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155. https://doi.org/https://doi.org/10.1016/0167-8116(94)00019-K
The Green side of Pink (2023). Virtual Fitting Rooms: The Next Big Trend?. Retrieved from https://www.thegreensideofpink.com/style-en/fashion/2023/virtual-fitting-rooms-the-next-big-trend/?lang=en
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125–143. https://doi.org/10.2307/249443
Triandis, H. C. (1977). Cross-cultural social and personality psychology. Personality and Social Psychology Bulletin, 3(2), 143–158. https://doi.org/10.1177/014616727700300202
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36, 157-178. https://doi.org/10.2307/41410412
Zacharis, G., & Nikolopoulou, K. (2022). Factors predicting University students’ behavioral intention to use eLearning platforms in the post-pandemic normal: an UTAUT2 approach with ‘Learning Value’. Education and Information Technologies, 27(9), 12065-12082. https://doi.org/10.1007/s10639-022-11116-2