研究生: |
李鴻駿 |
---|---|
論文名稱: |
電動車動力測試系統之建模與性能改善分析 Systems modeling and performance improvement of test platform for electric vehicles |
指導教授: |
洪翊軒
Hung, Yi-Hsuan 呂有豐 Lue, Yeou-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 硬體嵌入式模擬 、動力系統 、馬達控制 、行車測試 、電動車 |
英文關鍵詞: | Hardware-In-the-Loop, power systems, motor control, driving tests, electric Vehicles |
論文種類: | 學術論文 |
相關次數: | 點閱:411 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對電動車動力測試系統之建模與性能改善分析進行研究。為提升高準確度與快速反應之虛擬電動車動力系統測試技術,本研究首先透過Matlab/Simulink與參數分析建立離線之軟體模擬系統(Model In The Loop,MIL),比對基礎PI值之離線模擬(off-line)與即時模擬(on-line)平台精準度,確認離線模型(off-line)代表實際動力計HIL(Hardware-In-the-Loop,HIL)平台,接著透過全域搜尋法則(Global Search Algorithm)進行一For迴圈最佳化參數搜尋,並獲得最佳化PI控制器參數值,之後便可將此組PI值注入on-line平台,提升實際車速跟隨精準度。通訊介面取樣時間分析部分,透過準確的離線模型建立,可針對動力計測試平台之提升效益進行敏感度分析評估,並藉由馬達控制參數調校與硬體的改善,進而達成提升虛擬電動車動力計測試平台之效益。
結果顯示本研究可成功透過離線模擬執行動力計測試平台之車速跟隨精準度與性能提升效益分析;調校控制參數部分:基礎off-line與on-line平台在相同條件測試下,實際車速模擬誤差平均0.1 km/h;透過off-line之全域搜尋法則讓PI控制器於最佳化參數下,預測可使on-line平台平均車速誤差跟隨改善33 %以上;將最佳化之PI值注入on-line平台驗證,平均車速誤差跟隨改善38 %,透過本研究方法與搜尋法則有助於未來研究人員先期評估平台設備的性能提升與改善。
This thesis aims at modeling and improving the performance of an electric vehicle power testing system. To reach the high accuracy and fast response of the system, this study firstly established a off-line software system (Model In The Loop,MIL) on the Matlab/Simulink platform with real-plant parameter input. By comparing the off-line/on-line performance under the baseline PI control case, we ensured that the off-line model can represent the HIL(Hardware-In-the-Loop,HIL) platform. Next, a global search algorithm derived the optimal PI control parameters by for-loop search. The set of PI values them was employed to the on-line platform to enhance the vehicle speed tracking accuracy. For the bandwidth and delay analysis of the data communication, through the precise offline model, the benefit can be analyzed.
Results show that this research successfully evaluates the vehicle speed tracking accuracy and performance improvement by the off-line simulation of the dynamometer test platform. For the control parameter tuning, the average vehicle speed error between the off-line and on-line platform was 0.1 km/h. By using the global search algorithm on the off-line simulation, the vehicle speed tracking for the platform can be predicted to be improved by 33+%. The same PI can improve 38 % of the vehicle tracking error for the on-line platform. This research method and the parameter search algorithm truly help for the preliminary study of the performance enhancement and improvement of the testing platform.
[1] R. C.Duncan. 2000. The Peak of World Oil Production and the Road to the Olduvai Gorge. Available: http://jayhanson.us/.
[2] Lu, B., Wu, X., Figueroa, H., and Monti, A. (2007). A low-cost real-time hardware-in-the-loop testing approach of power electronics controls. Industrial Electronics, IEEE Transactions on, 54(2), 919-931.
[3] Li, H., Steurer, M., Shi, K. L., Woodruff, S., and Zhang, D. (2006). Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real-time simulation. Industrial Electronics, IEEE Transactions on, 53(4), 1144-1151.
[4] Ayasun, S., Vallieu, S., Fischl, R., and Chmielewski, T. (2003, August). Electric machinery diagnostic/testing system and power hardware-in-the-loop studies. InDiagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003. 4th IEEE International Symposium on (pp. 361-366). IEEE.
[5] Baker, New technology and possible advances in energy storage, Energy Policy 36 (2008) 4368-4373。
[6] Situ, L. (2009, May). Electric Vehicle development: The past, present and future. In Power Electronics Systems and Applications, 2009. PESA 2009. 3rd International Conference on (pp. 1-3). IEEE.
[7] Um, S., Wang, C. Y., and Chen, K. S. (2000). Computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal of the Electrochemical society, 147(12), 4485-4493.
[8] Thoben, B., and Siebke, A. (2004). Influence of different gas diffusion layers on the water management of the PEFC cathode. Journal of New Materials for Electrochemical Systems, 7(1), 13-20.
[9] Syed, F. U., Ying, H., Kuang, M., Okubo, S., and Smith, M. (2006, June). Rule-Based Fuzzy Gain-Scheduling PI Controller to Improve Engine Speed and Power Behavior in a Power-split Hybrid Electric Vehicle. In Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American (pp. 284-289). IEEE.
[10] Isermann, R., Schaffnit, J., and Sinsel, S. (1999). Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Engineering Practice, 7(5), 643-653.
[11] Sripakagorn, A., and Limwuthigraijirat, N. (2009). Experimental assessment of fuel cell/supercapacitor hybrid system for scooters. International journal of hydrogen energy, 34(15), 6036-6044.
[12] Thounthong, P., Rael, S., and Davat, B. (2009). Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. Journal of Power Sources, 193(1), 376-385.
[13] Hong-Wen, H., Feng-Chun, S., and Jie, X. (2007, December). Dynamic simulation and experiment of electric drive system on test bench. In Vehicular Electronics and Safety, 2007. ICVES. IEEE International Conference on (pp. 1-4). IEEE.
[14] Schupbach, R. M., and Balda, J. C. (2002). A versatile laboratory test bench for developing powertrains of electric vehicles. In Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th (Vol. 3, pp. 1666-1670). IEEE.
[15] Tabbache, B., Aboub, Y., Marouani, K., Kheloui, A., and Benbouzid, M. E. H. (2012, March). A simple and effective hardware-in-the-loop simulation platform for urban electric vehicles. In Renewable Energies and Vehicular Technology (REVET), 2012 First International Conference on (pp. 251-255). IEEE.
[16] Trigui, R., Jeanneret, B., Malaquin, B., and Plasse, C. (2009). Performance comparison of three storage systems for mild HEVs using PHIL simulation.Vehicular Technology, IEEE Transactions on, 58(8), 3959-3969.
[17] Raman, S., and McCanne, S. (1999, August). A model, analysis, and protocol framework for soft state-based communication. In ACM SIGCOMM Computer Communication Review (Vol. 29, No. 4, pp. 15-25). ACM.
[18] Fajri, P., Ahmadi, R., and Ferdowsi, M. (2013, May). Control approach based on equivalent vehicle rotational inertia suitable for motor-dynamometer test bench emulation of electric vehicles. In Electric Machines and Drives Conference (IEMDC), 2013 IEEE International (pp. 1155-1159). IEEE.
[19] Hui, Z., Cheng, L., and Guojiang, Z. (2008, September). Design of a versatile test bench for hybrid electric vehicles. In Vehicle Power and Propulsion Conference, 2008. VPPC'08. IEEE (pp. 1-4). IEEE.
[20] Luo, X., Zhong, Z., and Xiong, Y. (2009, September). A HIL test bench for FCHV control units. In Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE (pp. 1783-1787). IEEE.
[21] Alles, S., Swick, C. A., Hoffman, M. E., Mahmud, S. M., and Lin, F. (1995). The hardware design of a real-time HITL for traction assist simulation. Vehicular Technology, IEEE Transactions on, 44(3), 668-682.
[22] Alcalá, I., Claudio, A., and Guerrero, G. (2008, August). Test bench to emulate an electric vehicle through equivalent inertia and machine dc. In Power Electronics Congress, 2008. CIEP 2008. 11th IEEE International (pp. 198-203). IEEE.
[23] Yeo, H., and Kim, H. (2002). Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(11), 855-864.
[24] Ao, G., Qiang, J., Chen, Z., and Yang, L. (2008, June). Model-based energy management strategy development for hybrid electric vehicles. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on (pp. 1020-1024). IEEE.
[25] Wicks, F., and Donnelly, K. (1997, August). Modeling regenerative braking and storage for vehicles. In Energy Conversion Engineering Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety (Vol. 3, pp. 2030-2035). IEEE.
[26] Palla, S., Srivastava, A. K., and Schulz, N. N. (2007, May). Hardware in the loop test for relay model validation. In Electric Ship Technologies Symposium, 2007. ESTS'07. IEEE (pp. 449-454). IEEE.
[27] Bauman, J., and Kazerani, M. (2008). A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles. Vehicular Technology, IEEE Transactions on, 57(2), 760-769.
[28] Chong, S., Wong, C. B., Jia, H., Pan, H., Moore, P., Kalawsky, R., and O'Brien, J. (2011, August). Model driven system engineering for vehicle system utilizing model driven architecture approach and hardware-in-the-loop simulation. InMechatronics and Automation (ICMA), 2011 International Conference on (pp. 1451-1456). IEEE.
[29] Kalawsky, R. S., O'Brien, J., Chong, S., Wong, C., Jia, H., Pan, H., and Moore, P. R. (2013). Bridging the gaps in a model-based system engineering workflow by encompassing hardware-in-the-loop simulation.
[30] Ayasun, S., Vallieu, S., Fischl, R., and Chmielewski, T. (2003, August). Electric machinery diagnostic/testing system and power hardware-in-the-loop studies. InDiagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003. 4th IEEE International Symposium on (pp. 361-366). IEEE.
[31] Gao, H., Gao, Y., and Ehsani, M. (2001). A neural network based SRM drive control strategy for regenerative braking in EV and HEV. In Electric Machines and Drives Conference, 2001. IEMDC 2001. IEEE International (pp. 571-575). IEEE.
[32] Guvenc, B. A., and Karaman, S. (2009). Robust yaw stability controller design and hardware-in-the-loop testing for a road vehicle. Vehicular Technology, IEEE Transactions on, 58(2), 555-571.
[33] 宋德洤、黃永慧。2010。電動車發展趨勢下機電整合與關鍵零組件商機與產業佈局策略。161。新竹縣。工研院產業經濟與趨勢研究中心。
[34] 黃樑傑。2011。智慧車電領航-電動車跑得更遠。取自: http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1830