簡易檢索 / 詳目顯示

研究生: 陳鴻博
Chen, Hong-Po
論文名稱: 以中孔氧化石墨烯奈米粒子結合表面輔助雷射游離/脫附檢測精神活性物質
Detection of Psychoactive Substances by Using Mesoporous Graphene Oxide Nanoparticles with Surface-Assisted Laser Desorption/Ionization
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 葉怡均
Yeh, Yi-Chun
陳珮珊
Chen, Pai-Shan
劉沂欣
Liu, Yi-Hsin
口試日期: 2023/07/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 中孔洞沸石奈米粒子氧化石墨烯基質輔助雷射游離/脫附表面輔助雷射游離/脫附精神活性物質濫用藥物
英文關鍵詞: mesoporous zeolite nanoparticles, graphene-oxide, MALDI-TOF MS, SALDI-TOF MS, Psychoative Substances, abuse drugs
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301556
論文種類: 學術論文
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以中孔氧化石墨烯奈米粒子 (mesoporous graphene oxide nanoparticles, MGNs) 作為新型奈米基質,結合表面輔助雷射游離脫附 (surface-assisted laser desorption/ionization, SALDI) 技術檢測精神活性物質,提升表面質譜檢測之再現性及低荷質比區間 (m/z 100-500) 背景干擾問題。類似於中孔洞沸石奈米粒子 (MZNs) 具有高比表面積 (>900 m2/g) 及孔洞 (5-6 nm) 之高孔容 (≈1 mL/g) 具有優異的吸附藥物能力,MGNs表面因具有氧化石墨烯的強吸光性 (200-900 nm) 及近紅外放光 (1000-2500 nm) 特性,具有優異的光熱轉換效率提供精神活性物質游離/脫附之能量。對照兩種有機酸-基質龍膽酸 (2,5-Dihydroxybenzoic acid, DHB) 、α-氰基-4-羥基肉桂酸 (α-cyano-4-hydroxycinnamic acid, α-CHCA) 和商業化氧化石墨烯 (GO) 檢測精神活性物質的質譜結果,MGNs偵測濃度已達到法規濃度 (50 ppb) 等級且具有更低的背景訊號,且對於真實樣品之定量誤差值小於10%。此外,透過結合自動化技術分離尿液與咖啡包檢體,有望達到即時輔助臨床檢測進行毒癮即時檢測及防治。

    In this study, mesoporous graphene oxide nanoparticles (MGNs) were used as a new nano-matrix, combined with surface-assisted laser desorption/ionization (SALDI) technology to detect psychoactive substances. Improve the reproducibility of surface mass spectrometry detection and the background interference problem in the low charge-to-mass ratio range (m/z 100-500). Similar to mesoporous zeolite nanoparticles (MZNs), it has a high specific surface area (>900 m2/g) and a high pore volume (≈1 mL/g) of pores (5-6 nm) with excellent ability to adsorb drugs. The surface of MGNs has Graphene oxide has strong light absorption (200-900 nm) and near-infrared light emission (1000-2500 nm) characteristics, and has excellent photothermal conversion efficiency to provide energy for the dissociation/desorption of psychoactive substances. Comparison of two organic acids-matrix gentisic acid (2,5-Dihydroxybenzoic acid, DHB), α-cyano-4-hydroxycinnamic acid (α-cyano-4-hydroxycinnamic acid, α-CHCA) and commercial graphite oxide The mass spectrometry results of GO detection of psychoactive substances, the detection concentration of MGNs has reached the legal concentration (50 ppb) level and has lower background signals, and the quantitative error value for real samples is less than 10%. It is also possible to separate urine and coffee bag samples by combining automation technology, which is expected Achieve real-time auxiliary clinical detection for real-time detection and prevention of drug addiction.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 精神活性物質類型與分析挑戰性 1 1.1.1 精神活性物質概述 1 1.1.2 流行率和影響 3 1.1.3 現有分析方法及其挑戰性 3 1.2 表面輔助雷射脫附游離概述 5 1.2.1 MALDI-MS簡介及小分子分析 5 1.2.2 SALDI-MS簡介及小分子分析 8 1.3 中孔洞氧化石墨烯 10 1.4 研究目的與動機 12 第二章 實驗方法 13 2.1 化學藥品 13 2.2 沸石晶種合成 (beta zeolite seed, BZS) 15 2.3 中孔洞奈米粒子合成 16 2.3.1 中孔沸石奈米粒子 (MZNs) 16 2.3.2 中孔洞氧化石墨烯奈米粒子之合成 (MGNs) 17 2.4 中孔洞負載銀奈米粒子之合成 (Ag@MZNs) 18 2.4.1 表面官能基化修飾 18 2.4.2 銀前驅物之吸附 18 2.4.3 銀奈米粒子還原 19 2.5 磁性氧化石墨烯之合成 (Fe-MGNs/GO) 19 2.6 MALDI質譜校正與樣品備製 20 2.6.1 標準品備製 20 2.6.2 真實檢體製備 20 2.6.2.1 咖啡包樣品製備 20 2.6.2.2 尿液樣品製備 20 2.6.3 MALDI質譜校正與QC 21 2.6.4 MALDI質譜量測條件 21 2.7 材料合成及鑑定儀器 22 2.7.1 化學氣相沉積儀 (chemical vapor deposition, CVD) 22 2.7.2 反射式紫外-可見光光譜儀 (diffused reflectance ultraviolet–visible spectroscopy, DRS) 23 2.7.3 拉曼光譜儀 (Raman spectrometer) 23 2.7.4 比表面積及孔徑分析儀 (Brunauer-Emmett-Teller, BET) 24 2.7.5 介面電位分析儀 (zeta potential analyzer) 24 2.7.6 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 25 2.7.7 元素分析儀 (Elemental Analyzer, EA) 25 2.7.8 基質輔助雷射脫附游離飛行時間式質譜儀 (Matrix-assisted laser desorption ionization-time of flight Mass Spectrometry, MALDI-TOF-MS) 25 2.7.9 衰減式全反射傅立葉轉換红外線光譜(Attenuated Total Reflection Fourier-Transform Infrared Spectrometer, ATR-FTIR) 26 2.7.10 X光粉末繞射儀 (powder X-ray diffraction, PXRD) 27 第三章 結果與討論 28 3.1 最佳化之基質選擇 28 3.1.1 有機酸基質 28 3.1.2 固體酸碳基質 31 3.1.3 無機孔洞材料基質 33 3.2 無機孔洞複合材料之鑑定 37 3.2.1 形貌及孔洞性質 37 3.2.2 其他性質 41 3.3 表面輔助雷射脫附/游離檢測條件優化 46 3.3.1 儀器參數之優化 46 3.3.2 備製方法之比較探討 51 3.3.3 化學表面修飾之比較探討 61 3.3.3.1 氧化石墨烯複合材料 61 3.3.3.2 磁性複合材料 70 3.4 檢體分析及方法確效 73 3.4.1 MALDI/SALDI建立校正曲線 73 3.4.2 真實檢體 79 3.4.3 自動化分離系統 82 第四章 結論與未來展望 86 參考文獻 87

    1. Luethi, D.; Liechti, M. E., Designer drugs: mechanism of action and adverse effects. Archives of Toxicology 2020, 94 (4), 1085-1133.
    2. King, L. A.; Kicman, A. T., A brief history of ‘new psychoactive substances’. Drug Testing and Analysis 2011, 3 (7-8), 401-403.
    3. 台東縣衛生局毒品防制網認識毒品. https://www.ttshb.gov.tw/Drugfree/StaticPage/Introduction (accessed 26 July).
    4. Peacock, A.; Bruno, R.; Gisev, N.; Degenhardt, L.; Hall, W.; Sedefov, R.; White, J.; Thomas, K. V.; Farrell, M.; Griffiths, P., New psychoactive substances: challenges for drug surveillance, control, and public health responses. The Lancet 2019, 394 (10209), 1668-1684.
    5. Smith, J. P.; Sutcliffe, O. B.; Banks, C. E. J. A., An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). 2015, 140 (15), 4932-4948.
    6. United Nations Office on Drugs and Crime Understanding NPS chemistry and pharmacology.https://syntheticdrugs.unodc.org/syntheticdrugs/en/earlywarning/ewa/understanding-nps-chemistry-and-pharmacology.html (accessed July 30).
    7. Khaled, S. M.; Hughes, E.; Bressington, D.; Zolezzi, M.; Radwan, A.; Badnapurkar, A.; Gray, R., The prevalence of novel psychoactive substances (NPS) use in non-clinical populations: a systematic review protocol. Systematic Reviews 2016, 5 (1), 195.
    8. Quintana, P.; Ventura, M.; Grifell, M.; Palma, A.; Galindo, L.; Fornís, I.; Gil, C.; Carbón, X.; Caudevilla, F.; Farré, M.; Torrens, M., The hidden web and the fentanyl problem: Detection of ocfentanil as an adulterant in heroin. International Journal of Drug Policy 2017, 40, 78-83.
    9. Cody, J. T.; Foltz, R. L. J. F. a. o. m. s., GC/MS analysis of body fluids for drugs of abuse. 2020, 1-59.
    10. Dams, R.; Murphy, C. M.; Choo, R. E.; Lambert, W. E.; De Leenheer, A. P.; Huestis, M. A. J. A. C., LC− Atmospheric Pressure Chemical Ionization-MS/MS Analysis of Multiple Illicit Drugs, Methadone, and Their Metabolites in Oral Fluid Following Protein Precipitation. 2003, 75 (4), 798-804.
    11. Arntson, A.; Ofsa, B.; Lancaster, D.; Simon, J. R.; McMullin, M.; Logan, B. J. J. o. a. t., Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. 2013, 37 (5), 284-290.
    12. Correia, R. M.; Domingos, E.; Tosato, F.; dos Santos, N. A.; Leite, J. d. A.; da Silva, M.; Marcelo, M. C.; Ortiz, R. S.; Filgueiras, P. R.; Romão, W. J. A. M., Portable near infrared spectroscopy applied to abuse drugs and medicine analyses. 2018, 10 (6), 593-603.
    13. Stewart, S. P.; Bell, S. E.; Fletcher, N. C.; Bouazzaoui, S.; Ho, Y. C.; Speers, S. J.; Peters, K. L. J. A. c. a., Raman spectroscopy for forensic examination of β-ketophenethylamine “legal highs”: Reference and seized samples of cathinone derivatives. 2012, 711, 1-6.
    14. Castaing-Cordier, T.; Ladroue, V.; Besacier, F.; Bulete, A.; Jacquemin, D.; Giraudeau, P.; Farjon, J., High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances. Forensic Science International 2021, 321, 110718.
    15. Wei, X.; Liu, Z.; Jin, X.; Huang, L.; Gurav, D. D.; Sun, X.; Liu, B.; Ye, J.; Qian, K., Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Analytica Chimica Acta 2017, 950, 147-155.
    16. Terato, K.; Do, C. T.; Cutler, D.; Waritani, T.; Shionoya, H., Preventing intense false positive and negative reactions attributed to the principle of ELISA to re-investigate antibody studies in autoimmune diseases. Journal of Immunological Methods 2014, 407, 15-25.
    17. Wenning, M.; Breitenwieser, F.; Konrad, R.; Huber, I.; Busch, U.; Scherer, S., Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods 2014, 103, 44-52.
    18. Shen, M.; Xiang, P.; Shi, Y.; Pu, H.; Yan, H.; Shen, B., Mass imaging of ketamine in a single scalp hair by MALDI-FTMS. Analytical and Bioanalytical Chemistry 2014, 406 (19), 4611-4616.
    19. Chen, P.-C.; Zhang, W.-Z.; Chen, W.-R.; Jair, Y.-C.; Wu, Y.-H.; Liu, Y.-H.; Chen, P.-Z.; Chen, L.-Y.; Chen, P.-S. J. S.; Chemical, A. B., Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. 2022, 350, 130888.
    20. Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
    21. Hosseini, S.; Martinez-Chapa, S. O., Principles and Mechanism of MALDI-ToF-MS Analysis. In Fundamentals of MALDI-ToF-MS Analysis: Applications in Bio-diagnosis, Tissue Engineering and Drug Delivery, Hosseini, S.; Martinez-Chapa, S. O., Eds. Springer Singapore: Singapore, 2017; pp 1-19.
    22. Lai, Y.-H.; Wang, C.-C.; Chen, C. W.; Liu, B.-H.; Lin, S. H.; Lee, Y. T.; Wang, Y.-S., Analysis of Initial Reactions of MALDI Based on Chemical Properties of Matrixes and Excitation Condition. The Journal of Physical Chemistry B 2012, 116 (32), 9635-9643.
    23. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. 1988, 2 (8), 151-153.
    24. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60 (20), 2299-2301.
    25. Glish, G. L.; Vachet, R. W., The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery 2003, 2 (2), 140-150.
    26. Bakhtiar, R.; Tse, F. L. S., Biological mass spectrometry: a primer. Mutagenesis 2000, 15 (5), 415-430.
    27. Minakata, K.; Yamagishi, I.; Nozawa, H.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O., Determination of new pyrrolidino cathinone derivatives, PVT, F-PVP, MPHP, PV8, PV9 and F-PV9, in human blood by MALDI-Q-TOF mass spectrometry. Forensic Toxicology 2015, 33 (1), 148-154.
    28. Minakata, K.; Yamagishi, I.; Nozawa, H.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O., MALDI-TOF mass spectrometric determination of four pyrrolidino cathinones in human blood. Forensic Toxicology 2014, 32 (1), 169-175.
    29. Gottardo, R.; Chiarini, A.; Dal Prà, I.; Seri, C.; Rimondo, C.; Serpelloni, G.; Armato, U.; Tagliaro, F., Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS. 2012, 47 (1), 141-146.
    30. Prentice, B. M.; Chumbley, C. W.; Caprioli, R. M., High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. 2015, 50 (4), 703-710.
    31. Jackson, S. N.; Wang, H.-Y. J.; Woods, A. S., In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. Journal of the American Society for Mass Spectrometry 2005, 16 (12), 2052-2056.
    32. He, H.; Guo, Z.; Wen, Y.; Xu, S.; Liu, Z., Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Analytica Chimica Acta 2019, 1090, 1-22.
    33. Dong, J.; Ning, W.; Mans, D. J.; Mans, J. D., A binary matrix for the rapid detection and characterization of small-molecule cardiovascular drugs by MALDI-MS and MS/MS. Analytical Methods 2018, 10 (6), 572-578.
    34. Wei, J.; Buriak, J. M.; Siuzdak, G., Desorption–ionization mass spectrometry on porous silicon. Nature 1999, 399 (6733), 243-246.
    35. Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordström, A.; Siuzdak, G., Clathrate nanostructures for mass spectrometry. Nature 2007, 449 (7165), 1033-1036.
    36. Muthu, M.; Gopal, J.; Chun, S., Nanopost array laser desorption ionization mass spectrometry (NAPA-LDI MS): Gathering moss? TrAC Trends in Analytical Chemistry 2017, 97, 96-103.
    37. Sunner, J.; Dratz, E.; Chen, Y.-C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Analytical Chemistry 1995, 67 (23), 4335-4342.
    38. Wang, J.; Liu, Q.; Liang, Y.; Jiang, G., Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Analytical and Bioanalytical Chemistry 2016, 408 (11), 2861-2873.
    39. Huang, Y.-F.; Chang, H.-T., Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2006, 78 (5), 1485-1493.
    40. Chiu, T.-C.; Chang, L.-C.; Chiang, C.-K.; Chang, H.-T., Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. Journal of the American Society for Mass Spectrometry 2008, 19 (9), 1343-1346.
    41. Kawasaki, H.; Yonezawa, T.; Watanabe, T.; Arakawa, R., Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules. The Journal of Physical Chemistry C 2007, 111 (44), 16278-16283.
    42. McAlpin, C. R.; Voorhees, K. J.; Corpuz, A. R.; Richards, R. M., Analysis of Lipids: Metal Oxide Laser Ionization Mass Spectrometry. Analytical Chemistry 2012, 84 (18), 7677-7683.
    43. Piret, G.; Kim, D.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Schmuki, P.; Boukherroub, R., Surface-assisted laser desorption–ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst 2012, 137 (13), 3058-3063.
    44. Lin, Z.; Zheng, J.; Lin, G.; Tang, Z.; Yang, X.; Cai, Z., Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix. Analytical Chemistry 2015, 87 (15), 8005-8012.
    45. Shih, Y.-H.; Chien, C.-H.; Singco, B.; Hsu, C.-L.; Lin, C.-H.; Huang, H.-Y., Metal–organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chemical Communications 2013, 49 (43), 4929-4931.
    46. Guild, G. E.; Lenehan, C. E.; Walker, G. S., Surface-assisted laser desorption ionisation time-of-flight mass spectrometry with an activated carbon surface for the rapid detection of underivatised steroids. International Journal of Mass Spectrometry 2010, 294 (1), 16-22.
    47. Amini, N.; Shariatgorji, M.; Thorsén, G., SALDI-MS Signal enhancement using oxidized graphitized carbon black nanoparticles. Journal of the American Society for Mass Spectrometry 2009, 20 (6), 1207-1213.
    48. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H. J. C. o. M., Ordered mesoporous zeolite thin films with perpendicular reticular nanochannels of wafer size area. 2018, 30 (22), 8303-8313.
    49. 張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 國立臺灣師範大學, 台北市, 2019.
    50. Abdelhamid, H. J. M. S. P. T., Ionic liquids matrices for laser assisted desorption/ionization mass spectrometry. 2015, 1, 109-119.
    51. Ali, A.; Shahid, N.; Musharraf, S. G., Application of dyes as doping agents in MALDI-MS matrices for the signal enhancement of proteins. RSC Advances 2017, 7 (11), 6598-6604.
    52. Bailes, J.; Vidal, L.; Ivanov, D. A.; Soloviev, M., Quantum dots improve peptide detection in MALDI MS in a size dependent manner. Journal of Nanobiotechnology 2009, 7 (1), 10.
    53. Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q.; Zhang, H., Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chemical Communications 2010, 46 (37), 6974-6976.
    54. Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Hara, K.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; Taruta, S.; Endo, M., Carbon nanotubes: biomaterial applications. Chemical Society Reviews 2009, 38 (7), 1897-1903.
    55. Sun, W.; Zhang, X.; Jia, H. R.; Zhu, Y. X.; Guo, Y.; Gao, G.; Li, Y. H.; Wu, F. G. J. S., Water‐dispersible candle soot–derived carbon nano‐onion clusters for imaging‐guided photothermal cancer therapy. 2019, 15 (11), 1804575.
    56. Lu, M.; Yang, X.; Yang, Y.; Qin, P.; Wu, X.; Cai, Z., Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. 2017, 7 (4), 87.
    57. Dong, X.; Cheng, J.; Li, J.; Wang, Y., Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Analytical Chemistry 2010, 82 (14), 6208-6214.
    58. Lu, L., Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection. Biosensors and Bioelectronics 2018, 110, 180-192.
    59. Hu, L.; Xu, S.; Pan, C.; Zou, H.; Jiang, G., Preparation of a biochip on porous silicon and application for label-free detection of small molecule-protein interactions. 2007, 21 (7), 1277-1281.
    60. Wang, Y.; Zhang, K.; Tian, T.; Shan, W.; Qiao, L.; Liu, B., Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid. ACS Applied Materials & Interfaces 2021, 13 (4), 4886-4893.
    61. Yang, J.; Wang, R.; Huang, L.; Zhang, M.; Niu, J.; Bao, C.; Shen, N.; Dai, M.; Guo, Q.; Wang, Q. J. A. C. I. E., Urine metabolic fingerprints encode subtypes of kidney diseases. 2020, 59 (4), 1703-1710.
    62. Cheng, Y. H.; Chen, W. C.; Chang, S. Y. J. R. C. i. M. S., Rapid determination of rivaroxaban in human urine and serum using colloidal palladium surface‐assisted laser desorption/ionization mass spectrometry. 2015, 29 (21), 1977-1983.
    63. 王心妤. 石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之應用. 國立臺灣師範大學, 台北市, 2021.
    64. 賴玟均. 一步驟常壓微電漿法合成氧化石墨烯包覆銀奈米粒子負載於中孔洞沸石材料以應用於小分子的表面增強拉曼檢測. 國立臺灣師範大學, 台北市, 2023.
    65. Uslamin, E. A.; Saito, H.; Kosinov, N.; Pidko, E.; Sekine, Y.; Hensen, E. J. M., Aromatization of ethylene over zeolite-based catalysts. Catalysis Science & Technology 2020, 10 (9), 2774-2785.
    66. Çiplak, Z.; Yildiz, N.; Çalimli, A., Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fullerenes, Nanotubes and Carbon Nanostructures 2015, 23 (4), 361-370.
    67. Johra, F. T.; Lee, J.-W.; Jung, W.-G., Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 2883-2887.
    68. Bhui, D. K.; Bar, H.; Sarkar, P.; Sahoo, G. P.; De, S. P.; Misra, A. J. J. o. M. L., Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. 2009, 145 (1), 33-37.
    69. Yu, Y.; Xiong, G.; Li, C.; Xiao, F.-S., Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous and Mesoporous Materials 2001, 46 (1), 23-34.
    70. Chorom, M.; Rengasamy, P. J. E. j. o. s. s., Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. 1995, 46 (4), 657-665.
    71. Wiegelmann, M.; Dreisewerd, K.; Soltwisch, J., Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode. Journal of the American Society for Mass Spectrometry 2016, 27 (12), 1952-1964.
    72. Xie, H.; Wu, R.; Hung, Y. L. W.; Chen, X.; Chan, T. W. D., Development of a Matrix Sublimation Device with Controllable Crystallization Temperature for MALDI Mass Spectrometry Imaging. Analytical Chemistry 2021, 93 (16), 6342-6347.
    73. 簡佑珊. 以溶劑裂解合成中孔洞氧化石墨烯及其摻雜之應用. 國立臺灣師範大學, 台北市, 2022.
    74. Kim, Y.; Hurst, G. B.; Doktycz, M. J.; Buchanan, M. V., Improving Spot Homogeneity by Using Polymer Substrates in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Oligonucleotides. Analytical Chemistry 2001, 73 (11), 2617-2624.
    75. Wei, J.-L.; Chen, Y.-C., Using Magnetic Ions to Probe and Induce Magnetism of Pyrophosphates, Bacteria, and Mammalian Cells. ACS Applied Materials & Interfaces 2018, 10 (36), 30837-30843.
    76. Lai, Y.-T.; Kandasamy, K.; Chen, Y.-C., Magnetic Graphene Oxide-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry for Screening of Aflatoxin B1 from Complex Samples. Analytical Chemistry 2021, 93 (19), 7310-7316.

    下載圖示
    QR CODE