簡易檢索 / 詳目顯示

研究生: 吳忠芳
Chung-Fung Wu
論文名稱: 非最大跑步運動攝氧量與心跳率推算臨界速度之效度研
Validation of critical velocity derived from submaximal oxygen intake and heart rate during treadmill running
指導教授: 林正常
Lin, Jung-Charng
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 94
中文關鍵詞: 臨界速度非最大運動攝氧量非最大運動心跳率肌電圖
論文種類: 學術論文
相關次數: 點閱:242下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在比較傳統以最大努力跑步至衰竭時間所推算的臨界速度(critical velocity;CV),與非最大運動攝氧量與心跳率所推算的CV是否有差異存在。同時針對不同強度非最大運動時間所推算之CV強度,進行氧攝取量、心跳率與肌電圖(EMG)等人體生理反應的變化分析,以便確認非最大運動時間推算CV方法之有效性。
    本研究以20名經常參與運動的男大學生(20.45±0.83歲、177.30±6.21公分、71.62±6.45公斤)為受試對象,受試者除了先接受一次最大攝氧量及最大心跳率測驗外,所有受試者需接受四個不同強度跑步的CV測量。進行CV測量時,同時蒐集受試者之攝氧量與心跳率,以利從各強度跑步至90%、80%和70%目標攝氧量與心跳率之時間推算非最大運動攝氧量與心跳率CV。最後,以CV強度進行最長時間30分鐘固定強度的運動測驗,運動測驗過程中的第5、10、15、20、25與30分鐘,記錄每位受試者的攝氧量、心跳率與肌電圖變化。結果發現以傳統最大努力跑步至衰竭時間所推算的CV(3.54±0.318m/s)與CV90%VO2max、CV80%VO2max與CV90% HRmax (3.64±0.387、3.56±0.410和3.60±0.354m/s)無顯著差異,同時,與無氧閾值、最大攝氧量和無氧閾值速度的相關皆達顯著水準(0.63~0.73),顯示非最大運動攝氧量和心跳率所推算的CV與傳統運動至衰竭時間皆可有效推算CV。另外,本研究以實用性較高與SEE最低之CV90% HRmax持續30分鐘運動時,肌電圖與攝氧量無顯著變化,顯示以此強度運動30分鐘,攝氧量呈現穩定狀態,股外側肌無疲勞現象發生。

    The purposes of this study were 1) to examine the difference between critical velocity (CV) derived from submaximal exercise time and maximal exercise time, and 2) to examine the validity of CV derived from submaximal exercise time. Subjects were 20 college students(20.45±0.83yrs, 177.30±6.21cm, 71.62±6.45kg). Participants performed five exhaustive treadmill tests and a 30-min continuous treadmill tests at CV. The purpose of the first test session was to determine VO2max, HRmax and ventilatory threshold. At the next four sessions, each subject performed four exhaustive constant velocity tests (3.5m/sec~6m/sec). During each test, expired gases and HR were analyzed. CV was derived from submaximal exercise VO2 and HR at each velocity. Secondly, participants performed a 30-min continuous treadmill tests at their CV. During the test, the VO2, HR and electromyography (EMG; RMS & MPF) responses from treadmill and examined the validity of CV derived from submaximal exercise time were determined. The results were: 1) CV derived from submaximal exercise time (CV90%VO2max, 3.64±0.387; CV80%VO2max, 3.56±0.410; CV90%HRmax, 3.60±0.354m/s) and maximal exercise time were (3.54±0.318m/s) not significantly different, but were significantly correlated (0.63~0.73). 2) When running a 30-min continuous treadmill tests at their CV, HR increased with time, but RMS, MPF and VO2 remain unchanged.

    中文摘要 ----------------------------------------------------Ⅰ Abstract ----------------------------------------------------Ⅱ 謝 誌 ----------------------------------------------------Ⅲ 目 次 ----------------------------------------------------Ⅳ 表 次 ----------------------------------------------------Ⅶ 圖 次 ----------------------------------------------------Ⅷ 第壹章 緒論--------------------------------------------------1 一、研究背景--------------------------------------------------1 二、研究目的--------------------------------------------------3 三、研究假設--------------------------------------------------4 四、操作性定義------------------------------------------------4 五、研究的重要性----------------------------------------------6 第貳章 文獻探討----------------------------------------------9 一、臨界功率的起源 --------------------------------------------9 二、有關臨界功率測驗方法的研究-------------------------------11 三、有關臨界功率效度的研究-----------------------------------16 四、臨界功率在生理學上的意義---------------------------------25 五、總結-----------------------------------------------------33 第參章 研究方法與步驟---------------------------------------34 一、研究對象-------------------------------------------------34 二、研究方法與程序-------------------------------------------34 三、資料處理-------------------------------------------------41 第肆章 結果-------------------------------------------------42 一、受試者基本測驗資-----------------------------------------42 二、傳統方法推算之CV與非最大跑步運動攝氧量推算之CV差異 ------43 三、傳統方法推算之CV與非最大跑步運動心跳率推算之CV差異 ------44 四、各種方式所推算之臨界速度的比較 ------------------------46 五、臨界速度運動時的攝氧量變化 ------------------------------49 六、臨界速度運動時的心跳率變化-------------------------------50 七、臨界速度運動時的肌電訊號變化-----------------------------52 第伍章 討論-------------------------------------------------55 一、傳統方法推算之CV與非最大跑步運動攝氧量與心跳率推算之CV---55 二、各種方式所推算之臨界速度比較-----------------------------57 三、臨界速度運動時的攝氧量變化-------------------------------60 四、臨界速度運動時的心跳率變化-------------------------------62 五、臨界速度運動時的肌電圖變化-------------------------------63 第陸章 結論與建議-------------------------------------------67 一、結論-----------------------------------------------------67 二、建議-----------------------------------------------------67 參考資料-----------------------------------------------------69 一、中文部份-------------------------------------------------69 二、英文部份-------------------------------------------------70 附錄一:受試者須知與同意書-----------------------------------77 附錄二:受試者健康調查表-------------------------------------78 附錄三:受試者基本資料紀錄表---------------------------------79 附錄四:受試者不同強度最大運動時間紀錄表---------------------80 附錄五:受試者最大攝氧量百分比紀錄表-------------------------81 附錄六:受試者不同強度到達70%攝氧量時間紀錄表----------------82 附錄七:受試者不同強度到達80%攝氧量時間紀錄表----------------83 附錄八:受試者不同強度到達90%攝氧量時間紀錄表----------------84 附錄九:受試者最大心跳率百分比紀錄表-------------------------85 附錄十:受試者各運動強度至70%HRmax時間紀錄表-----------------86 附錄十一:受試者各運動強度至80%HRmax時間紀錄表---------------87 附錄十二:受試者各運動強度至90%HRmax時間紀錄表---------------88 附錄十三:攝氧穩定值推算無氧閾值速度紀錄表-------------------89 附錄十四:受試者臨界速度運動攝氧量變化紀錄表-----------------90 附錄十五:受試者臨界速度運動心跳率變化紀錄表-----------------91 附錄十六:受試者臨界速度運動RMS變化紀錄表--------------------92 附錄十七:受試者臨界速度運動MPF變化紀錄表--------------------93 個人小傳-----------------------------------------------------94

    王順正、王鶴森、林正常。(1995)。漸增強度運動測驗之臨界負荷與無氧閾值的關係研究,體育學報 (19),145-156。
    王順正。(1998)。長跑選手臨界速度跑的生理反應研究。國立台灣師範大學體育研究所博士論文。未出版博士論文,國立臺灣師範大學體育研究所,台北市,台灣。
    王順正。(1999)。長跑選手不同臨界速度判定法的比較研究,國科會八十八年度專題研究計劃(NSC-882413 H194027)。
    王順正與林正常。(1992)。臨界負荷、肌電圖疲勞閾值與無氧閾值的關係研究。體育學報 (14),207-226。
    王順正與林正常。(1994)。跑步臨界負荷與無氧閾值的關係研究,中華民國大專院校83年度體育學術研討會專刊(411-426)。台北市:中華民國大專體育運動總會。
    吳忠芳。(1998)。不同游泳臨界速度數學推算模式之比較研究。國立台灣師範大學體育研究所碩士論文。未出版碩士論文,國立臺灣師範大學體育研究所,台北市,台灣。
    李長生。(1997)。短距離捷泳與長距離捷泳導出之臨界速度的比較研究。未出版碩士論文,國立臺灣師範大學體育研究所,台北市,台灣。
    林正常。(1997)。運動生理學。台北市:師大書苑。
    戴堯種。(1995)。女子游泳選手之臨界速度對捷泳成績的預測研究。未出版碩士論文,國立臺灣師範大學體育研究所,台北市,台灣。
    Bulbulian, R. , Wilcox, A. R. and Darabos, B. L. (1986). Anaerobic contribution to distance running performance of trained cross country athletes. Medicine and Science in Exercise and Sports, 18, 107-113.
    Bull, A. J. , Housh, T. J. , Johnson, G. O. , Perry, S. R. (2000a). Electromyographic and mechanomyographic responses at critical power. Canadian Journal of Applied Physiology, 25(4), 262-270.
    Bull, A. J. , Housh, T. J. , Johnson, G. O. , Perry, S. R. (2000b). Effect of mathematical modeling on the estimation of critical power . Medicine and Science in Sports and Exercise, 32(2), 526-530.
    Capodaglio, P. , & Bazzini, G. (1996). Predicting endurance limits in arm cranking exercise with a subjectively based method. Ergonomics, 39(7), 924-932.
    Clingeleffer, A. , Naughton, L. M. , & Davoren, B. (1994a). Critical power may be determined from two tests in elite kayakers. European Journal of Applied Physiology, 68, 36-40.
    Clingeleffer, A. , Naughton, L. R. M. & Davoren, B. (1994b) . The use of critical power as a determinant for establishing the onset of blood lactate accumulation. European Journal of Applied Physiology, 68, 182-187.
    Cornwall, M. W. , Krock, L. P. , Wagner, L. M. (1994). Muscular fatigue and recovery following alternating isometric contractions at different levels of force. Aviation Space & Environmental Medicine, 65(4), 309.
    deVries, H. A. (1968). Method for evaluation of muscle fatigue and endurance form electromyographic fatigue curves. American Journal of Physical Medicine, 47(3), 976-978.
    deVries, H. A. , Moritani, T. , Nagata, A. , & Magnussen, K. (1982). The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics, 25(9), 783-791.
    deVries, H. A. , Tichy, M. W. , Housh, T. J. , Smyth, K. D. , Tichy, A. M. & Housh, D. J. (1987). A method for estimating physical working capacity at the fatigue threshold (PWCft). Ergonomics, 30(8), 1195-1204.
    Gaesser, G. A. , & Poole, D. C. (1996). The slow component of oxygen uptake kinetics in humans. In J. O. Holloszy(Ed.), Exercise and Sport Science Reviews, pp. 35-70. Baltimore, MD: Williams & Wilkins.
    Gaesser, G. A. , Carnevale, T. J. , Garfinkel, A. , Walter, D. O. & Womack, C. J. (1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Sports and Exercise, 27(10), 1430-1438.
    Gaesser, G. A. , Carnevale, T. J. , Garfinkel, A. and Walter, D.O. (1990). Modeling of the power - endurance relationship for high intensity exercise. Abstract. Medicine and Science in Sports and Exercise, 22, s16.
    Gerdle, B. , Edstrom, M. , Rahm, M. (1993). Fatigue in the shoulder muscles during static work at two different torque levels. Clinical Physiology, 13(5), 469-482.
    Ginn, E. M. and Mackinnon, L. T. (1989). The equivalence of onset of blood lactate accumulation, critical power and maximal lactate steady state during kayak ergometry. Abstract. Proceedings of the First IOC World Congress on Sport Sciences: 34.
    Hausswirth, C. , Brisswalter, J. , Vallier, J. M. , Smith, D. , Lepers, R. (2000). Evolution of electromyographic signal, running economy, and perceived exertion during different prolonged exercises. International Journal of Sports Medicine, 21(6), 429-436.
    Hill, D. W. , Ferguson, C. S. (1999). A physiological description of critical velocity. European Journal of Applied Physiology and Occupational Physiology, 79(3), 290-293.
    Hill, D. W. , Smith, J. C. (1999). Determination of critical power by pulmonary gas exchange. Canadian Journal of Applied Physiology, 24(1), 74-86.
    Hill, D. W. , Smith, J. C. , Chasteen, S. D., Leuschel, J. L. , & Miller, S. A. (1994). Methodological considerations in estimation of parameters of the power-time relationship. Medicine and Science in Sports and Exercise, 26(5, Supplement), s44.
    Hill, D. W. , Steward, R. P. , & Lane, C. J. (1995). Application of the critical power concept to young swimmers. Exercise Science, 11, 281-293.
    Hopkins, W. G. , Edmund, I. M. , Hamilton, B. H. , Macfarlane, D. J. , & Ross, B. H. (1989). Relation between power and endurance for treadmill running of short duration. Ergonomics, 32, 1565-1571.
    Housh, D. J. , Housh, T. J. and Bauge, S. M. (1989). The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics, 32(8), 997-1004.
    Housh, T. J. , deVries, H. A. , Housh, D. J. , Tichy, M. W. , Smyth, K. D. and Tichy, A. M. (1991a). The relationship between critical power and the onset of blood lactate accumulation. The Journal of Sports Medicine and Physical Fitness, 31(1), 31-36.
    Housh, T. J. , Johnson, G. O. , McDowell, S. L. , Housh, D. J. and Pepper, M. (1991b). Physiological responses at the fatigue threshold. International Journal of Sports Medicine, 12(3), 305-308.
    Hughson, R. L. , Orok, C. J. , & Staudt, L. E. (1984). A high velocity treadmill running test to assess endurance running potential. International Journal of Sports Medicine, 5, 23-25.
    Ikuta, Y. , Wakayoshi, K. and Nomura, T. (1994). Determination and validity of critical swimming force as performance index in the tethered swimming. Ⅶ International Symposium on Biomechanics and Medicine in Swimming - Program and Abstract Book: 33.
    Jenkins, D. G. , & Quigley, B. M. (1990). Blood lactate in trained cyclists during cycle ergometry at critical power. European Journal of Applied Physiology, 61, 278-283.
    Jenkins, D. G. and Quigley, B. M. (1992). Endurance training enhances critical power. Medicine and Science in Sports and Exercise, 24(11), 1283-1289.
    Knowlton, G. C. , Bennett, R. L. and Mcclure, R. (1951). Electromyography of fatigue. Archives of Physical Medicine, 32, 648-652.
    Larsson, S. E. , Cai, H. , Oberg, P. A. (1993). Microcirculation in the upper trapezius muscle during varying levels of static contraction, fatigue and recovery in healthy women—a study using percutaneous laser-Doppler flowmetry and surface electromyography. European Journal of Applied Physiology & Occupational Physiology, 66(6), 483-488.
    Lin, J. C. and Wang, S. C. (1999) The physiological responses of running at critical velocity for distance runners. Abstract. Medicine and Science in Sports and Exercise, 31(5,Supplement), s371.
    MacLaren, D. , Lindley, M. , Graham, A. , & Stripe, C. (1994). An evaluation of critical power and the lactate inflection point in age group swimmers. Ⅶ International Symposium on Biomechanics and Medicine in Swimming - Program and Abstract Book (p36). Atlanta:Ⅶ International Symposium on Biomechanics and Medicine in Swimming.
    Matsumoto, T. , Ito, K. and Moritani, T. (1991). The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. European Journal of Applied Physiology, 63, 1-5.
    Mayhew, J. L. , Ball, T. E. and Bowen, J. C. (1992). Prediction of bench press lifting ability from submaximal repetitions before and after training. Sports Medicine, training and rehabilation, 3(3), 195-201.
    McLellan, T. M. , & Cheung, K. S. (1992). A comparative evaluation of the induvidual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 25(2), 275-282.
    Miyashita, M. , Kenehisa, H. and Nemoto, I. (1981). EMG related to anaerobic threshold. The Journal of Sports Medicine and Physical Fitness Quarterly Review, 21, 209-217.
    Monod, H. , & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8, 329-338.
    Moritani, T. , Nagata, A. , deVries, H. A. & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
    Morton, R. H. & Hodgson, D. J. (1996). The relationship between power output and endurance : a brief review. European Journal of Applied Physiology, 73, 491-502.
    Morton, R. H. (1994). Critical power test for ramp exercise. European Journal of Applied Physiology, 69, 435-438.
    Morton, R. H. (1996). A 3-parameter critical power model. Ergonomics, 39(4), 611-619.
    Morton, R. H. , Green, S. , Bishop, D. and Jenkins, D. G. (1997). Ramp and constant power trials produce equivalent critical power estimates. Medicine and Science in Sports and Exercise, 29(6), 833-836.
    Nagata, A. , Moritani, T. & Muro, M. (1983). Critical power as a measure of muscular fatigue threshold and anaerobic threshold. Biomechanics, 8-A, 312-320.
    Nagata, A. , Muro, M. , Moritani, T. and Yoshida, T. (1981). Anaerobic threshold determination by blood lactate and myoelectric sygnals. Japanese Journal of Physiology, 31, 585-597.
    Oberg, T. , Sandsjo, L. , Kadefors, R. (1994). Subjective and objective evaluation of shoulder muscle fatigue. Ergonomics, 37(8), 1323-1333.
    Overend, T. J. , Cunningham, D. A. , Paterson, D. H. and Smith, W. D. F. (1992). Physiological responses of young and elderly men to prolonged exercise at critical power. European Journal of Applied Physiology, 64, 187-193.
    Pepper, M. L. , Housh, T. J. and Johnson, G. O. (1992). The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. International Journal of Sports Medicine, 13, 121-124.
    Poole, D. C. , Ward, S. A. , Gardner, G. W. , and Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31, 1265-1279.
    Scherrer, J. , & Bourguignon, A. (1959). Changes in the electromyogram produced by fatigue in man. American Journal of Physical Medicine, 38, 148-158.
    Seidel, H. , Beyer, H. , Brauer D. (1987). Electromyographic evaluation of back muscle fatigue with repeated sustained contractions of different strengths. European Journal of Applied Physiology & Occupational Physiology, 56(5), 592-602.
    Smith, J. C. , Dangelmaier, B. S. , Hill, D. W. (1999). Critical power is related to cycling time trial performance. International Journal of Sports Medicine, 20(6), 374-378.
    Talbert, S. M. , Smith, J. C. , Scarborough, P. A. , & Hill, D. W. (1991). Relationships between the power asymptote and indices of aerobic and anaerobic power. Abstract. Medicine and Science in Sports and Exercise, 23(4, Supplement), s27.
    Wakayoshi, K. , Ikuta, K. , Yoshida, T. , Udo, M. , Moritani, T. , Mutoh, Y. , & Miyashita, M. (1992a). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journal of Applied Physiology, 64, 153-157.
    Wakayoshi, K. , Ikuta, K. , Yoshida, T. , Udo, M. , Moritani, T. , Mutoh, Y. , & Miyashita, M. (1992b). A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. International Journal of Sports Medicine, 13(5), 367-371.
    Wakayoshi, K. , Yoshida, T. , Udo, M. , Harada, T. , Moritani, T. , Mutoh, Y. , & Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state? European Journal of Applied Physiology, 66, 90-95.
    Walsh, M. L. (2000). Whole body fatigue and critical power: a physiological interpretation . Sports Medicine, 29(3), 153-166.
    Yoshitake, Y. , Ue, H. , Miyazaki, M. , Moritani, T. (2001). Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy. European Journal of Applied Physiology, 84(3), 174-179

    QR CODE