簡易檢索 / 詳目顯示

研究生: 張君瑋
Chang, Chun-Wei
論文名稱: 蘇迪勒颱風(2015)之數值模擬與研究
Numerical Simulation and Study of Typhoon Soudelor(2015)
指導教授: 簡芳菁
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 120
中文關鍵詞: 颱風氣旋初始化數值模擬通道效應
DOI URL: https://doi.org/10.6345/NTNU202202133
論文種類: 學術論文
相關次數: 點閱:209下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    臺灣夏季常受到颱風侵襲,因中央山脈地勢高聳,地形因素使颱風路徑預報困難。本研究以蘇迪勒颱風(2015)進行個案研究,利用WRF模式針對蘇迪勒颱風進行數值模擬實驗,同時也使用Nguyen and Chen(2011)的颱風初始化模組(簡稱NC2011)進行模擬測試,改善颱風初始結構偏弱的狀態,並針對模擬結果進行分析。
    研究結果指出NC2011方法可以加強颱風初始強度,在模式初期不論是颱風(CTL組)的水平結構和垂直結構均較未經過初始化的颱風(NCI組)完整,使颱風整體結構更接近真實颱風,且渦漩結構在海上可以維持一段時間。
    本研究也針對地形高度進行敏感度測試,在颱風結構的方面,發現當地形越高,颱風環流受到破壞的程度較嚴重,出海後的中心氣壓也較高;而地形越低,颱風環流受到破壞的程度較小,出海後的中心氣壓相對較低。在颱風路徑方面,當颱風強度越強、結構越深,駛流對路徑造成的效應大於通道效應,使颱風在登陸後路徑南偏;當地形加高,通道效應大於駛流對路徑造成的效應,使颱風在登陸前路徑南偏。

    目 錄 致謝 i 摘要 ii 第一章 前言 1 1.1文獻回顧 1 1.2研究動機 6 第二章 個案介紹和觀測資料分析 8 2.1蘇迪勒介紹 8 2.2觀測分析 9 a. 綜觀環境介紹 9 b. 中尺度對流分析 12 c. 降雨分析 13 2.3 衛星雲圖 14 2.4 小結 15 第三章 研究方法 16 3.1模式介紹. 16 3.2 WRF TC initialization 簡介 17 3.3模式設定 19 3.4 實驗設計 19 第四章 氣旋初始化結果比較 22 4.1初始化颱風結構和強度比較 22 4.2初始化後颱風結構隨著時間的改變 24 4.3初始化颱風的降雨比較 25 4.4初始化颱風的雷達回波剖面比較 27 4.5小結 29 第五章 CTL組數值模擬結果 31 5.1颱風路徑 31 5.2路徑誤差和氣壓誤差 32 5.3降雨分析 32 5.4水氣積分的輻散場 33 5.5中尺度對流分析 34 5.6中尺度對流剖面 36 5.7相對溼度剖面及位溫分布 38 5.8小結 39 第六章 敏感度實驗 40 6.1路徑差異分析 40 6.2中心氣壓誤差分析 41 6.3累積降水差異分析 42 6.4中尺度對流剖面 44 6.5駛流分析 46 6.6通道效應 48 6.7小結 49 第七章 結論與未來展望 51 7.1總結 51 7.2 未來展望 55 參考文獻 56 附錄 59

    Barker, D. M., W. Huang, Y.-R. Guo, and Q. N. Xiao, 2004: A Three-Dimensional (3DVAR) Data Assimilation System For Use With MM5: Implementation and Initial Results. Mon. Wea. Rev., 132, 897–914.
    Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Mon. Wea. Rev., 121, 2046-2061.
    Brand, S., and J. W. Blelloch, 1974:Changes in the characteristics of typhoons creossing the island of Taiwan. Mon. Wea. Rev., 102, 708-713.
    Chien, F.-C.and H.-C. Kuo 2011: On extreme rainfall of Typhoon Morakot(2009). J. Geophys. Res. Atmos. 116
    Davidson, N. E., and H. C. Weber, 2000: The BMRC High- Resolution Tropical Cyclone Prediction System: TC- LAPS. Mon. Wea. Rev., 128, 1245.
    Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613-633.
    Galarneau, T. J., Bosart, L. F. and Schumacher, R. S., 2010:Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev.,138, 3272-3297
    Jian, G.-J., and C.-C., Wu, 2008:A numerical study of the track deflection of super-typhoon Haitang(2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.
    Kwon, I.-H., and H.-B. Cheong, 2010: Tropical Cyclone Initialization with a Spherical High-Order Filter and an Idealized Three-Dimensional Bogus Vortex. Mon. Wea. Rev., 138, 1344-1367.
    Leslie, L. M., and G. J. Holland, 1995: On the Bogussing of Tropical Cyclones in Numerical Models: A Comparison of Vortex Profiles. Meteor. Atmos. Phys., 56, 101-110.
    Lin, Y.-L.,1993: Orographic effects on airflow and mesoscale weather system over Taiwan. Terr. Atmos. Oceanic Sci., 4, 381-420.
    Liou, C.-S., and K. Sashegyi, 2012: On the initialization of tropical cyclones with a three dimensional variational analysis. Nat Hazards, 63, 1375-1391
    Nguyen, H. V., and Y.-L. Chen, 2011: High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
    Nguyen, H. V., and Y.-L. Chen, 2014: On the Spin-up Process of a Typhoon Vortex in a Tropical Cyclone Initialization Scheme and Its Impacts on the Intensity Simulations. Mon. Wea. Rev.(In Review).
    Pu, Z.-X., and S. A. Braun, 2001: Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation. Mon. Wea. Rev., 129, 2023-2039.
    Tang CK, Chan JC. 2013. Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Q. J. R. Meteorol. Soc.140: 1578–1589, doi: 10.1002/qj.2240.

    Wang, C.-C., K. Hung-Chi, C. Yu-Han, H. Hsiao-Ling, C. Chao-Hsuan, and K. Tsuboki, 2012: Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. J. Atmos. Sci., 69, 3172-3196.
    Wu, C.-C., 2001:Numerical simulation of typhoon Gladys(1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533-1549.
    Wu, C.-C., C. Kun-Hsuan, W. Yuqing, and K. Ying-Hwa, 2006: Tropical Cyclone Initialization and Prediction Based on Four-Dimensional Variational Data Assimilation. J. Atmos. Sci., 63, 2383-2395.
    Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: current understanding and future challenges. Bull. Amer. Meteor. Soc.,80,67-80
    Wu, L.,B. Wang, and S. Geng, 2005:Growing influence of Typhoon on East Asia.Geophys. Res. Lett., Vol 32, L18703, doi: 10.1029/2005GL022937.
    Xiao, Q., Y.-H. Kuo, Y. Zhang, D. M. Barker, and D.-J. Won, 2006: A Tropical Cyclone Bogus Data Assimilation Scheme in the MM5 3D-Var System and Numerical Experiments with Typhoon Rusa (2002) Near Landfall. J. Meteor. Soc. Japan, 84, 671-689.
    Zhang, S., T. Li, X. Ge, M. Peng, and N. Pan, 2011: A 3DVAR-Based Dynamical Initialization Scheme for Tropical Cyclone Predictions. Wea. Forecasting, 27, 473-483.
    Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836–860.

    下載圖示
    QR CODE