簡易檢索 / 詳目顯示

研究生: 熊軒諒
Hsiung, Hsuan-Liang
論文名稱: 鎳鐵合金/氧化鎳/鉑之異質結構的自旋轉矩鐵磁共振
Spin-Torque Ferromagnetic Resonance in Py/NiO/Pt Heterostructure
指導教授: 江佩勳
Jiang, Pei-hsun
口試委員: 張書維
Chang, Shu-Wei
趙宇強
Chao, Yu-Chiang
江佩勳
Jiang, Pei-Hsun
口試日期: 2023/07/26
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 自旋轉矩-鐵磁共振自旋霍爾角
英文關鍵詞: spin-torque ferromagnetic resonance, spin Hall angle
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301496
論文種類: 學術論文
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要希望能夠增加代表著自旋轉矩-鐵磁共振(spin-torque ferromagnetic resonance, ST-FMR) 中,電荷電流轉換為自旋電流之轉換效率的自旋霍爾角的大小(spin Hall angle, SHA)。我們使用的基本材料為,用於產生自旋轉矩的鉑(Pt)金屬,以及產生鐵磁共振(ferromagnetic resonance, FMR)的鎳鐵合金(permalloy, Py, Ni80Fe20)。為了提升轉換效率,我們嘗試了兩種方法。
    第一種方法是在原本由Pt (5nm)與Py (5nm)所組成的雙層異質結構之間,再夾入一層2 nm厚的一氧化鎳(NiO),希望能夠由此使得異質結構的自旋霍爾角增大。另外我們也有將此樣品最低降溫到了1.5 K左右進行量測,也分析了此樣品在各種溫度下的自旋霍爾角大小。
    第二種方法是將原本作為產生自旋轉矩的Pt,更換為別的材料。在本研究中,我們選用了近期較為熱門的PtTe2作為替代材料,並且實踐出了一整套製程,可以將塊材狀的二維材料,製作成可以量測ST-FMR的樣品。

    The primary focus of this study is to enhance the magnitude of the spin Hall angle (SHA), which signifies the charge-to-spin conversion efficiency of spin-torque ferromagnetic resonance (ST-FMR). The foundational materials employed encompass platinum (Pt), employed for generating spin torque, as well as a nickel-iron alloy (permalloy, Py, Ni80Fe20), responsible for inducing ferromagnetic resonance (FMR). To augment the conversion efficiency, two distinct methods were explored.
    The first method involved inserting a 2 nm thick layer of nickel oxide (NiO) between the bilayer heterostructure composed of Pt (5nm) and Py (5nm). The intention was to amplify the spin Hall angle within this heterostructure. Additionally, we conducted measurements on this specimen at temperatures as low as around 1.5 K and analyzed the magnitude of the spin Hall angle across various temperature ranges.
    The second method entailed substituting Pt, conventionally used for generating spin torque, with an alternative material. In this study, we opted for the recently popular PtTe2 as the replacement material. We successfully devised an entire fabrication process to transform bulk-like 2D materials into specimens suitable for ST-FMR measurements.

    第1章 研究動機與文獻回顧 1 1.1 研究動機與文獻回顧 1 1.1.1 NiO 3 1.1.2 PtTe2 7 第2章 理論研究 11 2.1 磁性材料 11 2.1.1 順磁性材料 (paramagnetic materials) 12 2.1.2 鐵磁性材料 (ferromagnetic materials) 12 2.1.3 反鐵磁性材料 (antiferromagnetic materials) 13 2.1.4 亞鐵磁性材料 (ferrimagnetic materials) 14 2.1.5 抗磁性材料 (diamagnetic materials) 15 2.2 鐵磁性材料之磁域 16 2.3 磁滯曲線 (hysteresis loop) 18 2.4 磁異向性 (Magnetic Anisotropy) 19 2.4.1 磁晶異相性 (magnetocrystalline anisotropy) 19 2.4.2 形狀異向性 (shape anisotropy) 20 2.4.3 應力異向性 (stress anisotropy) 20 2.5 各異向性磁阻 (anisotropic magnetoresistance, AMR) 20 2.6 鐵磁共振 (Ferromagnetic Resonance, FMR) 21 2.7 自旋-軌道耦合 (Spin-Orbit Coupling) 22 2.8 霍爾效應 (Hall Effect) 22 2.9 自旋霍爾效應 (Spin Hall Effect, SHE) 23 2.10 自旋轉矩-鐵磁共振 (Spin-Torque Ferromagnetic Resonance, ST-FMR) 24 2.11 自旋霍爾角 (spin Hall angle) 26 2.12 拓樸絕緣體 (Topological Insulator) 26 2.13 二硫屬過渡金屬化合物 (Transition Metal Dichalcogenide, TMD) 27 2.14 共平面波導 (Coplanar Waveguide, CPW) 29 第3章 實驗儀器 30 3.1 旋轉塗佈機 30 3.2 紫外光-發光二極體曝光機 (Ultraviolet light-emitting diode lithography) 31 3.3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 32 3.4 電子束微影 (E-beam Lithography) 33 3.5 電子束蒸鍍儀 (E-beam Evaporator) 34 3.6 熱蒸鍍儀 (Thermal Evaporator) 35 3.7 SynthHD微波源 36 3.8 Keithley 2000、Keithley 2400 37 3.9 室溫磁鐵 38 3.10 Bias tee 39 3.11 致冷機降溫系統 40 第4章 樣品製作 41 4.1 Py/NiO/Pt樣品製作 41 4.1.1 切割基板 41 4.1.2 清洗基板 41 4.1.3 旋塗光阻 42 4.1.4 軟烤基板 42 4.1.5 以電子束微影術製作圖形 42 4.1.6 以電子束蒸鍍蒸鍍材料 44 4.1.7 舉離 (lift-off) 44 4.1.8 製作樣品與CPW 45 4.2 PtTe2/Py樣品製作 49 4.2.1 PtTe2製作 49 4.2.2 製作定位PtTe2碎片位置的mark 50 4.2.3 製作PtTe2/Py樣品的圖形 51 4.2.4 鍍Py (5nm)到PtTe2碎片上 51 4.2.5 製作定位PtTe2/Py樣品位置的mark 52 4.2.6 製作PtTe2/Py樣品的CPW圖形 53 4.2.7 蒸鍍CPW 55 第5章 測量方法 57 5.1 製作樣品載台 57 5.2 室溫環境測量ST-FMR 59 5.2.1 以Keithley 2000量測 60 5.2.2 以鎖相放大器 (lock-in amplifier) 量測 60 5.3 低溫環境量測ST-FMR 62 第6章 實驗結果分析 64 6.1 ST-FMR訊號擬合 64 6.2 對稱與反對稱訊號對總體ST-FMR訊號貢獻 65 6.3 共振場與有效磁化場 66 6.4 自旋霍爾角 66 6.5 室溫環境測量Py/NiO/Pt樣品之ST-FMR訊號 67 6.5.1 Py/NiO/Pt與Py/Pt樣品之共振場與有效磁化場 69 6.5.2 Py/NiO/Pt樣品對稱及反對稱貢獻 70 6.5.3 Py/NiO/Pt與Py/Pt樣品之自旋霍爾角 71 6.6 低溫環境測量Py/NiO/Pt樣品之ST-FMR訊號 72 6.6.1 低溫環境Py/NiO/Pt樣品之共振場與有效磁化場 73 6.6.2 低溫環境Py/NiO/Pt樣品之自旋霍爾角 75 6.7 室溫環境測量PtTe2/Py樣品之ST-FMR訊號 76 6.7.1 PtTe2/Py樣品之共振場與有效磁化場 76 6.7.2 PtTe2/Py樣品之自旋霍爾角 78 6.8 結果討論與未來展望 79 6.8.1 結果討論 79 6.8.2 未來展望 80 參考文獻 81

    Moriyama, T., et al., Anti-damping spin transfer torque through epitaxial nickel oxide. Applied Physics Letters, 2015. 106(16): p. 162406.
    Zhao, B., et al., 2D Metallic Transition‐metal dichalcogenides: structures, synthesis, properties, and applications. Advanced Functional Materials, 2021. 31(48): p. 2105132.
    Wang, H., et al., Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Physical Review B, 2015. 91(22): p. 220410.
    Stiehl, G.M., et al., Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β− MoTe 2. Physical Review B, 2019. 100(18): p. 184402.
    Xu, H., et al., High spin hall conductivity in large‐area type‐II Dirac semimetal PtTe2. Advanced Materials, 2020. 32(17): p. 2000513.
    Wang, H., et al., Spin-Orbit-Torque Switching Mediated by an Antiferromagnetic Insulator. Physical Review Applied, 2019. 11(4): p. 044070.
    Song, C., et al., Spin-orbit torques: Materials, mechanisms, performances, and potential applications. Progress in Materials Science, 2021. 118: p. 100761.
    Dolui, K., U. Bajpai, and B.K. Nikolić, Effective spin-mixing conductance of topological-insulator/ferromagnet and heavy-metal/ferromagnet spin-orbit-coupled interfaces: A first-principles Floquet-nonequilibrium Green function approach. Physical Review Materials, 2020. 4(12): p. 121201.
    Tserkovnyak, Y., et al., Nonlocal magnetization dynamics in ferromagnetic heterostructures. Reviews of Modern Physics, 2005. 77(4): p. 1375.
    Jin, L., et al., Effect of interfacial roughness spin scattering on the spin current transport in YIG/NiO/Pt heterostructures. ACS applied materials & interfaces, 2019. 11(38): p. 35458-35467.
    Yuan, H., et al., Zeeman-type spin splitting controlled by an electric field. Nature Physics, 2013. 9(9): p. 563-569.
    Kittel, C., Introduction to solid state physics Eighth edition. 2021.
    D'Yakonov, M.I. and V. Perel, Possibility of orienting electron spins with current. Soviet Journal of Experimental and Theoretical Physics Letters, 1971. 13: p. 467.
    Zhang, W., et al., Research Update: Spin transfer torques in permalloy on monolayer MoS2. APL Materials, 2016. 4(3): p. 032302.
    Bernevig, B.A., T.L. Hughes, and S.-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. science, 2006. 314(5806): p. 1757-1761.
    Konig, M., et al., Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007. 318(5851): p. 766-770.
    Simons, R.N., Coplanar waveguide circuits, components, and systems. 2004: John Wiley & Sons.
    Wen, C.P., Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Transactions on Microwave Theory and Techniques, 1969. 17(12): p. 1087-1090.
    Zhao, Y., et al., Experimental investigation of temperature-dependent Gilbert damping in permalloy thin films. Scientific reports, 2016. 6(1): p. 22890.
    Wang, Y., et al., Determination of intrinsic spin Hall angle in Pt. Applied Physics Letters, 2014. 105(15).

    下載圖示
    QR CODE