研究生: |
湯騏勳 Tang, Qi-Xun |
---|---|
論文名稱: |
藉由中孔洞氧化石墨烯奈米粒子結合微滴陣列應用於表面輔助雷射游離/脫附檢測濫用藥物 Using Mesoporous Graphene Oxide Nanoparticles in combination with a microarray for Surface-Assisted Laser Desorption/Ionization detection of drug abuse. |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
劉沂欣
Liu, Yi-Hsin 陳珮珊 Chen, Pai-Shan 廖尉斯 Liao, Wei-Ssu |
口試日期: | 2024/07/08 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 中孔洞氧化石墨烯奈米粒子 、基質輔助雷射游離/脫附 、表面輔助雷射游離/脫附 、濫用藥物 、微滴陣列 |
英文關鍵詞: | mesoporous graphene oxide nanoparticles, MALDI-TOF MS, SALDI-TOF MS, abuse drugs, microdroplet array |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401555 |
論文種類: | 學術論文 |
相關次數: | 點閱:203 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一般的Matrix-Assisted Laser Desorption/Ionization (MALDI)技術中,使用有機酸基質時常面臨兩大挑戰:一是在乾燥結晶過程中的不均勻性,導致低再現性;二是在低分子量區間背景訊號的干擾。本研究提出了一種創新的解決方案,使用中孔氧化石墨烯奈米粒子(mesoporous graphene oxide nanoparticles, MGNs)作為新型奈米基質。MGNs展現了諸多優勢:首先,它們在低分子量區間(m/z 100-500)產生更低的背景訊號;其次,由於其獨特的孔洞結構(mesoporous 3–8 nm and microporous <1.5nm)和表面氧化石墨烯,MGNs具有高效的吸附能力(1.1-1.2 mL/g)和能量轉移效率,並且有強大的吸光能力(200-1100 nm)以及在近紅外放光(600-1100 nm),這些都有助於分析物質的有效解離。此外,為了進一步解決不均勻性和再現性的問題,將MGNs與微滴陣列晶片結合應用於Surface-Assisted Laser Desorption/Ionization (SALDI) 技術。以期利用優化過後的溶劑條件 (H2O+1% EG) 及儀器參數提升檢測不同濫用藥物(例如:芽子鹼甲酯)的均勻性及再現性,進而降低定量分析中的相對標準偏差。
In conventional Matrix-Assisted Laser Desorption/Ionization (MALDI) techniques, using organic acid matrices often faces two major challenges: uneven crystallization during the drying process, leading to low reproducibility, and background interference in the low molecular weight region. This study proposes an innovative solution by using mesoporous graphene oxide nanoparticles (MGNs) as a novel nanomaterial matrix. MGNs exhibit several advantages: firstly, they produce lower background signals in the low molecular weight range (m/z 100-500); secondly, due to their unique mesoporous (3–8 nm) and microporous (<1.5 nm) structures and surface graphene oxide, MGNs possess high adsorption capacity (1.1-1.2 mL/g) and efficient energy transfer capabilities. Additionally, they have strong light absorption (200-1100 nm) and near-infrared emission (600-1100 nm), which contribute to the effective desorption of analytes. To further address issues of uniformity and reproducibility, MGNs were combined with microarray chips in Surface-Assisted Laser Desorption/Ionization (SALDI) technology. By optimizing solvent conditions (H2O + 1% EG) and instrument parameters, the study aims to enhance the uniformity and reproducibility in detecting various drugs of abuse (e.g., ecgonine methyl ester), thereby reducing the relative standard deviation in quantitative analysis.
Luethi, D.; Liechti, M. E., Designer drugs: mechanism of action and adverse effects. Archives of Toxicology 2020, 94 (4), 1085-1133.
Peacock, A.; Bruno, R.; Gisev, N.; Degenhardt, L.; Hall, W.; Sedefov, R.; White, J.; Thomas, K. V.; Farrell, M.; Griffiths, P., New psychoactive substances: challenges for drug surveillance, control, and public health responses. The Lancet 2019, 394 (10209), 1668-1684.
Crime, U. N. O. o. D. a. New psychoactive substances (NPS). https://www.unodc.org/wdr2013/en/nps.html.
Cody, J. T.; Foltz, R. L. J. F. a. o. m. s., GC/MS analysis of body fluids for drugs of abuse. 2020, 1-59.
Dams, R.; Murphy, C. M.; Choo, R. E.; Lambert, W. E.; De Leenheer, A. P.; Huestis, M. A. J. A. C., LC− Atmospheric Pressure Chemical Ionization-MS/MS Analysis of Multiple Illicit Drugs, Methadone, and Their Metabolites in Oral Fluid Following Protein Precipitation. 2003, 75 (4), 798-804.
Arntson, A.; Ofsa, B.; Lancaster, D.; Simon, J. R.; McMullin, M.; Logan, B. J. J. o. a. t., Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. 2013, 37 (5), 284-290.
Correia, R. M.; Domingos, E.; Tosato, F.; dos Santos, N. A.; Leite, J. d. A.; da Silva, M.; Marcelo, M. C.; Ortiz, R. S.; Filgueiras, P. R.; Romão, W. J. A. M., Portable near infrared spectroscopy applied to abuse drugs and medicine analyses. 2018, 10 (6), 593-603.
Stewart, S. P.; Bell, S. E.; Fletcher, N. C.; Bouazzaoui, S.; Ho, Y. C.; Speers, S. J.; Peters, K. L. J. A. c. a., Raman spectroscopy for forensic examination of β-ketophenethylamine “legal highs”: Reference and seized samples of cathinone derivatives. 2012, 711, 1-6.
Castaing-Cordier, T.; Ladroue, V.; Besacier, F.; Bulete, A.; Jacquemin, D.; Giraudeau, P.; Farjon, J., High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances. Forensic Science International 2021, 321, 110718.
Proteomics, C. MALDI-TOF Mass Spectrometry. https://www.creative-proteomics.com/technology/maldi-tof-mass-spectrometry.htm.
Peer Reviewed: Characterizing Synthetic Polymers by MALDI MS. Analytical Chemistry 1998, 70 (13), 456A-461A.
Hosseini, S.; Martinez-Chapa, S. O., Principles and Mechanism of MALDI-ToF-MS Analysis. In Fundamentals of MALDI-ToF-MS Analysis: Applications in Bio-diagnosis, Tissue Engineering and Drug Delivery, Hosseini, S.; Martinez-Chapa, S. O., Eds. Springer Singapore: Singapore, 2017; pp 1-19.
Fenselau, C.; Demirev, P. A., Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrometry Reviews 2001, 20 (4), 157-171.
Harvey, D. J., Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrometry Reviews 1999, 18 (6), 349-450.
Lay Jr, J. O., MALDI-TOF mass spectrometry of bacteria*. Mass Spectrometry Reviews 2001, 20 (4), 172-194.
Tang, K.; Opalsky, D.; Abel, K.; van den Boom, D.; Yip, P.; Del Mistro, G.; Braun, A.; Cantor, C. R., Single nucleotide polymorphism analyses by MALDI-TOF MS. International Journal of Mass Spectrometry 2003, 226 (1), 37-54.
Nielen, M. W. F., Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrometry Reviews 1999, 18 (5), 309-344.
Minakata, K.; Yamagishi, I.; Nozawa, H.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O., Determination of new pyrrolidino cathinone derivatives, PVT, F-PVP, MPHP, PV8, PV9 and F-PV9, in human blood by MALDI-Q-TOF mass spectrometry. Forensic Toxicology 2015, 33 (1), 148-154.
Minakata, K.; Yamagishi, I.; Nozawa, H.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O., MALDI-TOF mass spectrometric determination of four pyrrolidino cathinones in human blood. Forensic Toxicology 2014, 32 (1), 169-175.
Dong, J.; Ning, W.; Mans, D. J.; Mans, J. D., A binary matrix for the rapid detection and characterization of small-molecule cardiovascular drugs by MALDI-MS and MS/MS. Analytical Methods 2018, 10 (6), 572-578.
Cohen, L. H.; Gusev, A. I., Small molecule analysis by MALDI mass spectrometry. Analytical and Bioanalytical Chemistry 2002, 373 (7), 571-586.22.
Fuchs, B.; Süß, R.; Schiller, J., An update of MALDI-TOF mass spectrometry in lipid research. Progress in Lipid Research 2010, 49 (4), 450-475.
van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Gruters, R. A.; Luider, T. M., Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrometry Reviews 2011, 30 (1), 101-120.
van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Luider, T. M., Qualitative and Quantitative Analysis of Pharmaceutical Compounds by MALDI-TOF Mass Spectrometry. Analytical Chemistry 2006, 78 (15), 5403-5411.
Tholey, A.; Heinzle, E., Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—applications and perspectives. Analytical and Bioanalytical Chemistry 2006, 386 (1), 24-37.
Wilkinson, W. R.; Gusev, A. I.; Proctor, A.; Houalla, M.; Hercules, D. M., Selection of internal standards for quantitative analysis by matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry. Fresenius' Journal of Analytical Chemistry 1997, 357 (3), 241-248.
Nicola, A. J.; Gusev, A. I.; Proctor, A.; Jackson, E. K.; Hercules, D. M., Application of the fast-evaporation sample preparation method for improving quantification of angiotensin II by matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry 1995, 9 (12), 1164-1171.
Grant, D. C.; Helleur, R. J., Simultaneous analysis of vitamins and caffeine in energy drinks by surfactant-mediated matrix-assisted laser desorption/ionization. Analytical and Bioanalytical Chemistry 2008, 391 (8), 2811-2818.
Önnerfjord, P.; Ekström, S.; Bergquist, J.; Nilsson, J.; Laurell, T.; Marko-Varga, G., Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1999, 13 (5), 315-322.
Laugesen, S.; Roepstorff, P., Combination of two matrices results in improved performance of MALDI MS for peptide mass mapping and protein analysis. Journal of the American Society for Mass Spectrometry 2003, 14 (9), 992-1002.
Gusev, A. I.; Wilkinson, W. R.; Proctor, A.; Hercules, D. M., Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Analytical Chemistry 1995, 67 (6), 1034-1041.
Distler, A. M.; Allison, J., Improved MALDI-MS Analysis of Oligonucleotides through the Use of Fucose as a Matrix Additive. Analytical Chemistry 2001, 73 (20), 5000-5003.
Grant, D. C.; Helleur, R. J., Rapid screening of anthocyanins in berry samples by surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (2), 156-164.
Zhao, S.; Somayajula, K. V.; Sharkey, A. G.; Hercules, D. M.; Hillenkamp, F.; Karas, M.; Ingendoh, A., Novel method for matrix-assisted laser mass spectrometry of proteins. Analytical Chemistry 1991, 63 (5), 450-453.
Dale, M. J.; Knochenmuss, R.; Zenobi, R., Graphite/Liquid Mixed Matrices for Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 1996, 68 (19), 3321-3329.
Sze, E. T. P.; Chan, T. W. D.; Wang, G., Formulation of matrix solutions for use in matrix-assisted laser desorption/ionization of biomolecules. Journal of the American Society for Mass Spectrometry 1998, 9 (2), 166-174.
Turney, K.; Harrison, W. W., Liquid supports for ultraviolet atmospheric pressure matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry 2004, 18 (6), 629-635.
Peterson, D. S., Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrometry Reviews 2007, 26 (1), 19-34.
Law, K. P.; Larkin, J. R., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Analytical and Bioanalytical Chemistry 2011, 399 (8), 2597-2622.
Lim, A. Y.; Ma, J.; Boey, Y. C. F., Development of Nanomaterials for SALDI-MS Analysis in Forensics. Advanced Materials 2012, 24 (30), 4211-4216.
Silina, Y. E.; Volmer, D. A., Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 2013, 138 (23), 7053-7065.
López de Laorden, C.; Beloqui, A.; Yate, L.; Calvo, J.; Puigivila, M.; Llop, J.; Reichardt, N.-C., Nanostructured Indium Tin Oxide Slides for Small-Molecule Profiling and Imaging Mass Spectrometry of Metabolites by Surface-Assisted Laser Desorption Ionization MS. Analytical Chemistry 2015, 87 (1), 431-440.
Wang, X.-N.; Tang, W.; Gordon, A.; Wang, H.-Y.; Xu, L.; Li, P.; Li, B., Porous TiO2 Film Immobilized with Gold Nanoparticles for Dual-Polarity SALDI MS Detection and Imaging. ACS Applied Materials & Interfaces 2020, 12 (38), 42567-42575.
Arakawa, R.; Kawasaki, H., Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Sciences 2010, 26 (12), 1229-1240.
Dupré, M.; Coffinier, Y.; Boukherroub, R.; Cantel, S.; Martinez, J.; Enjalbal, C., Laser desorption ionization mass spectrometry of protein tryptic digests on nanostructured silicon plates. Journal of Proteomics 2012, 75 (7), 1973-1990.
Piret, G.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Boukherroub, R., Matrix-Free Laser Desorption/Ionization Mass Spectrometry on Silicon Nanowire Arrays Prepared by Chemical Etching of Crystalline Silicon. Langmuir 2010, 26 (2), 1354-1361.
Shariatgorji, M.; Amini, N.; Ilag, L. L., Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules. Journal of Nanoparticle Research 2009, 11 (6), 1509-1512.
Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B., Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry 2003, 75 (22), 6191-6195.
Hopwood, F. G.; Michalak, L.; Alderdice, D. S.; Fisher, K. J.; Willett, G. D., C60-assisted laser desorption/ionization mass spectrometry in the analysis of phosphotungstic acid. Rapid Communications in Mass Spectrometry 1994, 8 (11), 881-885.
Liu, Y.; Liu, J.; Yin, P.; Gao, M.; Deng, C.; Zhang, X., High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. Journal of Mass Spectrometry 2011, 46 (8), 804-815.
Kim, Y.-K.; Min, D.-H., The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Small-Molecule Analysis. Chemistry – A European Journal 2015, 21 (19), 7217-7223.
Tang, H.-W.; Ng, K.-M.; Lu, W.; Che, C.-M., Ion Desorption Efficiency and Internal Energy Transfer in Carbon-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry: Desorption Mechanism(s) and the Design of SALDI Substrates. Analytical Chemistry 2009, 81 (12), 4720-4729.
Kawasaki, H.; Akira, T.; Watanabe, T.; Nozaki, K.; Yonezawa, T.; Arakawa, R., Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Analytical and Bioanalytical Chemistry 2009, 395 (5), 1423-1431.
Su, C.-L.; Tseng, W.-L., Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry 2007, 79 (4), 1626-1633.
Silina, Y. E.; Fink-Straube, C.; Hayen, H.; Volmer, D. A., Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry. Analytical Methods 2015, 7 (9), 3701-3707.
McAlpin, C. R.; Voorhees, K. J.; Corpuz, A. R.; Richards, R. M., Analysis of Lipids: Metal Oxide Laser Ionization Mass Spectrometry. Analytical Chemistry 2012, 84 (18), 7677-7683.
Piret, G.; Kim, D.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Schmuki, P.; Boukherroub, R., Surface-assisted laser desorption–ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst 2012, 137 (13), 3058-3063.
Ng, K.-M.; Chau, S.-L.; Tang, H.-W.; Wei, X.-G.; Lau, K.-C.; Ye, F.; Ng, A. M.-C., Ion-Desorption Efficiency and Internal-Energy Transfer in Surface-Assisted Laser Desorption/Ionization: More Implication(s) for the Thermal-Driven and Phase-Transition-Driven Desorption Process. The Journal of Physical Chemistry C 2015, 119 (41), 23708-23720.
Silina, Y. E.; Koch, M.; Volmer, D. A., Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures. Journal of Mass Spectrometry 2015, 50 (3), 578-585.
Xiao, Y.; Retterer, S. T.; Thomas, D. K.; Tao, J.-Y.; He, L., Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry. The Journal of Physical Chemistry C 2009, 113 (8), 3076-3083.
Walker, B. N.; Stolee, J. A.; Vertes, A., Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry. Analytical Chemistry 2012, 84 (18), 7756-7762.
Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials 2018, 30 (22), 8303-8313.
張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 國立臺灣師範大學, 台北市, 2019.
Chen, C.-Y.; Li, H.-H.; Chu, H.-Y.; Wang, C.-M.; Chang, C.-W.; Lin, L.-E.; Hsu, C.-C.; Liao, W.-S., Finely Tunable Surface Wettability by Two-Dimensional Molecular Manipulation. ACS Applied Materials & Interfaces 2018, 10 (48), 41814-41823.
Lai, Y.-H.; Wang, C.-C.; Chen, C. W.; Liu, B.-H.; Lin, S. H.; Lee, Y. T.; Wang, Y.-S., Analysis of Initial Reactions of MALDI Based on Chemical Properties of Matrixes and Excitation Condition. The Journal of Physical Chemistry B 2012, 116 (32), 9635-9643.
Abdelhamid, H., Ionic Liquids Matrices for Laser Assisted Desorption/Ionization Mass Spectrometry. Mass Spectrometry & Purification Techniques 2015, 01.
Gan, Y.; Zhang, Q.; Chen, Y.; Zhao, Y.; Xiong, Z.; Zhang, L.; Zhang, W., Selective extraction of endogenous peptides from human serum with magnetic mesoporous carbon composites. Talanta 2016, 161, 647-654.
Yuan, M.; Shan, Z.; Tian, B.; Tu, B.; Yang, P.; Zhao, D., Preparation of highly ordered mesoporous WO3–TiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. Microporous and Mesoporous Materials 2005, 78 (1), 37-41.
Zhao, H.; Li, Y.; Wang, J.; Cheng, M.; Zhao, Z.; Zhang, H.; Wang, C.; Wang, J.; Qiao, Y.; Wang, J., Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Interfaces 2018, 10 (43), 37732-37742.
Luo, G.; Chen, Y.; Siuzdak, G.; Vertes, A., Surface Modification and Laser Pulse Length Effects on Internal Energy Transfer in DIOS. The Journal of Physical Chemistry B 2005, 109 (51), 24450-24456.
Kao, K.-C.; Lin, T.-S.; Mou, C.-Y., Enhanced Activity and Stability of Lysozyme by Immobilization in the Matching Nanochannels of Mesoporous Silica Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (13), 6734-6743.
Lee, C.-H.; Lin, T.-S.; Mou, C.-Y., Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4 (2), 165-179.
Lee, C.-H.; Lo, L.-W.; Mou, C.-Y.; Yang, C.-S., Synthesis and Characterization of Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an Anti-Inflammatory Drug. Advanced Functional Materials 2008, 18 (20), 3283-3292.
Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J., On the mechanism of laser-induced desorption–ionization of organic compounds from etched silicon and carbon surfaces. The Journal of Chemical Physics 2001, 115 (4), 1891-1901.
Shen, Q.; Toyoda, T., Dependence of thermal conductivity of porous silicon on porosity characterized by photoacoustic technique. Review of Scientific Instruments 2003, 74 (1), 601-603.
王心妤. 石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之應用. 國立臺灣師範大學, 台北市, 2021.
Wang, Y.; Zhang, K.; Tian, T.; Shan, W.; Qiao, L.; Liu, B., Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid. ACS Applied Materials & Interfaces 2021, 13 (4), 4886-4893.
Yang, J.; Wang, R.; Huang, L.; Zhang, M.; Niu, J.; Bao, C.; Shen, N.; Dai, M.; Guo, Q.; Wang, Q. J. A. C. I. E., Urine metabolic fingerprints encode subtypes of kidney diseases. 2020, 59 (4), 1703-1710.
Cheng, Y. H.; Chen, W. C.; Chang, S. Y. J. R. C. i. M. S., Rapid determination of rivaroxaban in human urine and serum using colloidal palladium surface‐assisted laser desorption/ionization mass spectrometry. 2015, 29 (21), 1977-1983.
Song, J.; Wang, X.; Chang, C.-T., Preparation and Characterization of Graphene Oxide. Journal of Nanomaterials 2014, 2014, 276143.
Lu, M.; Yang, X.; Yang, Y.; Qin, P.; Wu, X.; Cai, Z. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules Nanomaterials [Online], 2017.
Dong, X.; Cheng, J.; Li, J.; Wang, Y., Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Analytical Chemistry 2010, 82 (14), 6208-6214.
Pan, C.; Xu, S.; Hu, L.; Su, X.; Ou, J.; Zou, H.; Guo, Z.; Zhang, Y.; Guo, B., Using Oxidized Carbon Nanotubes as Matrix for Analysis of Small Molecules by MALDI-TOF MS. Journal of the American Society for Mass Spectrometry 2005, 16 (6), 883-892.
Ugarov, M. V.; Egan, T.; Khabashesku, D. V.; Schultz, J. A.; Peng, H.; Khabashesku, V. N.; Furutani, H.; Prather, K. S.; Wang, H. W. J.; Jackson, S. N.; Woods, A. S., MALDI Matrices for Biomolecular Analysis Based on Functionalized Carbon Nanomaterials. Analytical Chemistry 2004, 76 (22), 6734-6742.
Lim, A. Y.; Gu, F.; Ma, Z.; Ma, J.; Rowell, F., Doped amorphous silica nanoparticles as enhancing agents for surface-assisted time-of-flight mass spectrometry. Analyst 2011, 136 (13), 2775-2785.
Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J., Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society 2010, 132 (23), 8180-8186.
De, M.; Chou, S. S.; Dravid, V. P., Graphene Oxide as an Enzyme Inhibitor: Modulation of Activity of α-Chymotrypsin. Journal of the American Chemical Society 2011, 133 (44), 17524-17527.
Wang, H.; Hu, B.; Gao, Z.; Zhang, F.; Wang, J., Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling. Journal of Materials Science & Technology 2021, 63, 192-202.
Karthik, V.; Selvakumar, P.; Senthil Kumar, P.; Vo, D.-V. N.; Gokulakrishnan, M.; Keerthana, P.; Tamil Elakkiya, V.; Rajeswari, R., Graphene-based materials for environmental applications: a review. Environmental Chemistry Letters 2021, 19 (5), 3631-3644.
Siripongpreda, T.; Siralertmukul, K.; Rodthongkum, N., Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide. Food Chemistry 2020, 329, 127165.
Zhang, J.; Zhang, L.; Li, R.; Hu, D.; Ma, N.; Shuang, S.; Cai, Z.; Dong, C., Magnetic graphene composites as both an adsorbent for sample enrichment and a MALDI-TOF MS matrix for the detection of nitropolycyclic aromatic hydrocarbons in PM2.5. Analyst 2015, 140 (5), 1711-1716.
Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D., Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560-10564.
Kobylis, P.; Stepnowski, P.; Caban, M., Review of the applicability of ionic liquid matrices for the quantification of small molecules by MALDI MS. Microchemical Journal 2021, 164, 105983.
Pei, X.-L.; Huang, Y.-Y.; Gong, C.; Xu, X., Matrix-assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Oligosaccharides in Soybean and Bean Leaf with Ionic Liquid as Matrix. Chinese Journal of Analytical Chemistry 2017, 45 (8), 1155-1163.
Cramer, R.; Karas, M.; Jaskolla, T. W., Enhanced MALDI MS Sensitivity by Weak Base Additives and Glycerol Sample Coating. Analytical Chemistry 2014, 86 (1), 744-751.
陳鴻博. 以中孔氧化石墨烯奈米粒子結合表面輔助雷射游離/脫附檢測精神活性物質. 國立臺灣師範大學, 台北市, 2023.
Holle, A.; Haase, A.; Kayser, M.; Höhndorf, J., Optimizing UV laser focus profiles for improved MALDI performance. Journal of Mass Spectrometry 2006, 41 (6), 705-716.
Hu, J.-B.; Chen, Y.-C.; Urban, P. L., Coffee-ring effects in laser desorption/ionization mass spectrometry. Analytica Chimica Acta 2013, 766, 77-82.
Hu, H.; Larson, R. G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet. Langmuir 2005, 21 (9), 3972-3980.
Hu, H.; Larson, R. G., Marangoni Effect Reverses Coffee-Ring Depositions. The Journal of Physical Chemistry B 2006, 110 (14), 7090-7094.
Fei, Y.; Fang, S.; Hu, Y. H., Synthesis, properties and potential applications of hydrogenated graphene. Chemical Engineering Journal 2020, 397, 125408.
Uslamin, E. A.; Saito, H.; Kosinov, N.; Pidko, E.; Sekine, Y.; Hensen, E. J. M., Aromatization of ethylene over zeolite-based catalysts. Catalysis Science & Technology 2020, 10 (9), 2774-2785.
Çiplak, Z.; Yildiz, N.; Çalimli, A., Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fullerenes, Nanotubes and Carbon Nanostructures 2015, 23 (4), 361-370.
Johra, F. T.; Lee, J.-W.; Jung, W.-G., Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 2883-2887.
Pugazhenthiran, N.; Sathishkumar, P.; Albormani, O.; Murugesan, S.; Kandasamy, M.; Selvaraj, M.; Suresh, S.; Kumar, S. K.; Contreras, D.; Váldes, H.; Mangalaraja, R. V., Silver nanoparticles modified ZnO nanocatalysts for effective degradation of ceftiofur sodium under UV–vis light illumination. Chemosphere 2023, 313, 137515.
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters 2008, 8 (1), 36-41.
Ruan, X.; Sun, Y.; Du, W.; Tang, Y.; Liu, Q.; Zhang, Z.; Doherty, W.; Frost, R. L.; Qian, G.; Tsang, D. C., Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresource technology 2019, 281, 457-468.
簡佑珊. 以溶劑裂解合成中孔洞氧化石墨烯及其摻雜之應用. 國立臺灣師範大學, 台北市, 2022.
Jacquemin, L.; Song, Z.; Le Breton, N.; Nishina, Y.; Choua, S.; Reina, G.; Bianco, A., Mechanisms of radical formation on chemically modified graphene oxide under near infrared irradiation. Small 2023, 19 (16), 2207229.
Gionco, C.; Giamello, E.; Mino, L.; Paganini, M. C., The interaction of oxygen with the surface of CeO 2–TiO 2 mixed systems: an example of fully reversible surface-to-molecule electron transfer. Physical Chemistry Chemical Physics 2014, 16 (39), 21438-21445.
Tung, V. C.; Luo, J.; Kim, F., 舊材料的新見解—氧化石墨烯之界面活性.
Nordström, A.; Apon, J. V.; Uritboonthai, W.; Go, E. P.; Siuzdak, G., Surfactant-Enhanced Desorption/Ionization on Silicon Mass Spectrometry. Analytical Chemistry 2006, 78 (1), 272-278.
Sobańska, K.; Krasowska, A.; Mazur, T.; Podolska-Serafin, K.; Pietrzyk, P.; Sojka, Z., Diagnostic Features of EPR Spectra of Superoxide Intermediates on Catalytic Surfaces and Molecular Interpretation of Their g and A Tensors. Topics in Catalysis 2015, 58 (12), 796-810.
Gionco, C.; Giamello, E.; Mino, L.; Paganini, M. C., The interaction of oxygen with the surface of CeO2–TiO2 mixed systems: an example of fully reversible surface-to-molecule electron transfer. Physical Chemistry Chemical Physics 2014, 16 (39), 21438-21445.
Zhang, T.; Zhao, Z.; Zhang, H.; Zhai, H.; Ruan, S.; Jiao, L.; Zhang, W., Effects of water on fingernail electron paramagnetic resonance dosimetry. Journal of Radiation Research 2016, 57 (5), 460-467.
Yang, W.; Zhang, L.; Xiao, D.; Feng, R.; Wang, W.; Pan, S.; Zhao, Y.; Zhao, L.; Frenking, G.; Wang, X., A diradical based on odd-electron σ-bonds. Nature Communications 2020, 11 (1), 3441.