研究生: |
黃威智 Huang Wei Chih |
---|---|
論文名稱: |
苯環三取代化合物之第一電子激發態暨離子態振動光譜~3,4-二氟苯胺 |
指導教授: |
曾文碧
Tzeng, Wen-Bih 何嘉仁 Ho, Jia-Jen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 光譜 |
英文關鍵詞: | spectrum |
論文種類: | 學術論文 |
相關次數: | 點閱:321 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用高解析度共振雙光子游離光譜術與質量解析臨界游離光譜術來探討3,4-二氟苯胺之第一電子躍遷能和絕熱游離能及其在第一電子激發態和離子基態之振動模式。
其中質量解析臨界游離光譜是藉由中間態S1000、S117a10、S16a10、S1110掃描所得,所測得之絕熱游離能為64195 5 cm-1,光譜分析結果顯示大部分明顯之譜峰都與苯環之平面運動有關。
藉由此次實驗所得之數據與本實驗室所發表之其他苯胺衍生物數據進行比較,可得知苯胺之氟取代物在間位及對位之取代效應對於各類振動模式、躍遷能及絕熱游離能造成之影響。理論計算結果以及實驗結果也具有良好之一致性可幫助我們更準確的進行光譜譜線之標定。
The mass-analyzed threshold ionization (MATI) and two-color resonant two-photon ionization (2C-R2PI) methods were used for studing 3,4-difluoroaniline (34FA) in the electronically excited S1 and cationic ground D0 states. The threshold ion spectra were recorded for 34FA via the 00 vibrationless and the 17a1, 6a1, and 11 vibrational levels of the S1 state. The adiabatic ionization energy of 34FA is determined to be 64 195 5 cm-1. Our experimental results show that the observed active modes are mostly related to in-plane ring vibrations of the ion . Comparing these data with those of other aniline derivatives available in the literature allows us to learn about the meta and para substitution effects resulting from the relative location of the amino and fluoro substituents. The calculated results are in very good agreement with our experimental findings.
[1] T.H. Maiman, Nature 187 (1960) 493.
[2] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
[3] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
[4] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A. 106 (2002) 7690.
[5] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
[6] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
[7] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
[8] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
[9] D.E. Powers, J.B. Hopkins, R.E. Smally, J. Chem. Phys. 72 (1980) 5721.
[10] Thomas Carney, Thomas Baer, J. Chem. Phys. 75 (1981) 477.
[11] G. Sha, D. Proch, K. L. Kompa, J. Chem. Phys. 87 (1987) 2742.
[12] Esther de Beer, M. P. Koopmans, C. A. de Lange, Yumin Wang, W. A. Chupka, J. Chem. Phys. 94 (1991) 7634.
[13] Ming Wu, David P. Taylor, and Philip M. Johnson, J. Chem. Phys. 95 (1991) 761.
[14] Hari P. Upadhyaya, Ankur Saha, Awadhesh Kumar, T. Bandyopadhyay, Prakash D. Naik, P.N. Bajaj 2010, J. Phys. Chem. A, 114, 5271.
[15] Jacob Baker, Maria Konstantaki, Stelios Couris, J. Chem. Phys. 103 (1995) 2436.
[16] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
[17]D.W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
[18] Martin C. R. Cockett, Chem. Soc. Rev. 34 (2005 ) 935.
[19] Bilin Tsai, Tomas Baer, Michael L. Horovitz, Sci. Ins. Rev. 45 (1974) 494.
[20] J. M. Ajello, A. Chutjian, J. Chem. Phys. 65 (1976) 5524.
[21] G. C. King, A. J. Yencha and M. C. A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
[22] Ara Chutjian, Joseph M. Ajello, J. Chem. Phys. 66, (1977) 4544.
[23] D. Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys.46 (1967) 4995.
[24] C. Y. Ng, Int. J. Mass Spectrom. 200 (2000) 357.
[25] K. Kimura, J. Electron Spectrosc. Relat. Phenom. 100 (1999) 273.
[26] K. Muller-Dethlefs, M. Sander, E.W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
[27] L.A. Chewter, M. Sander, K. Muller-Dethlefs, E.W. Schlag, J. Chem. Phys. 86 (1987) 4737.
[28] E.W. Schlag, ZEKE Spectroscopy, Cambridge University Press, Cambridge, (1998).
[29] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
[30] Jieli Lin, Jung Lee Lin, Wen Bih Tzeng, Chem. Phys. Lett. 371 (2003) 662.
[31] Jieli Lin, Jung Lee Lin, Wen Bih Tzeng, J. Chem. Phys. 295 (2003) 97.
[32] Jung Lee Lin and Wen Bih Tzeng, J. Chem. Phys. 115 (2001) 743
[33] L. W. Yuan, C. Li, W. B. Tzeng, 2005, J. Phys. Chem. A, 109, 9481.
[34] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
[35] J.L. Lin, L.C.L. Huang, W.B. Tzeng, J. Phys. Chem. A 105 (2001) 11455.
[36] Adrio J, Carretero JC, Ruano JLG, Pallares A, Vicioso M, Heterocycles, 51 (1999) 1563.
[37]Lin, J. L., and Tzeng, W. B. 2000, Phys. Chem. Chem. Phys., 2, 3759.
[38]Lin, J. L., Lin, K. C., and Tzeng, W. B. 2001, Appl. Spectrosc., 55, 120.
[39]Tzeng, W. B., and Lin, J. L. 1999, J. Phys. Chem. A, 103, 8612.
[40] Lin, J. L., Tzeng, W. B. J. Chem. Phys. 113 (2000) 4109.
[41] J.L. Lin , S.C. Yang , Y.C. Yu , W.B. Tzeng , Chem. Phys. Lett. 356 (2002) 267.
[42] J. Lin, W.B. Tzeng, Trends in Appl. Spectrosc. 5 (2004) 71.
[43] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
[44] P.M. Johnson, E.C. Otis, Annu. Rev. Phys. Chem. 32 (1981) 139.
[45] U. Boesl, H.J. Neusser, E.W. Schlag, Chem. Phys. 55 (1981) 193.
[46] H. Su, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 86.
[47] M.A. Smith, J.W. Hager, S.C. Wallace, J. Chem. Phys. 80 (1984) 3097.
[48] M.A. Duncan, T.G. Deltz, R.E.Smalley, J. Chem. Phys. 75 (1981) 2118.
[49] K. Kimura, J.E. Spectrosc. Relat. Phenom. 100 (1999) 273.
[50] H. Ikoma, K.Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
[51] F. Merk, Annu. Rev. Phys. Chem. 48 (1997) 675.
[52]Andrewheld and Edward W. Schlag, Kluwer Academic Publishers.(1991) 249.
[53] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520.
[54] S. Georgiev, H.J. Neusser, 2004, Chem. Phys. Lett., 389, 24.
[55] John H. Moore, Christopher C. Davis, Michael A. Coplan, Sandra C. Greer, Building scientific apparatus, University of Maryland, College Park, 2002
[56] W.C. Wiley, I.H. Mclaren, Rev. Sci. Instrum. 26 (1955) 1150.
[57] W Baumgatner and J Schmid, J. Phys. D : Appl. Phys. 5 (1972) 1769
[58] Joseph Ladislas Wiza, Nuclear Instruments and Methods. 162 (1979) 587
[59] User’s manual (Spectra-Physics LAB-150)
[60]Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever.
[61] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004 [62] James B. Foresman, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., 2nd Ed, 1996.
[63] L. Yuan, C. Li, J.L. Lin, S.C. Yang, and W.B. Tzeng, Chem. Phys. 323 (2006) 429.
[64] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
[65] T. Vondrak, S.I. Sato, K. Kimura, J. Phys. Chem. A. 101 (1997) 2384.
[66]E. Bright Wilson, Physical Review. Volum 45 (1934)
[67]J. Michael Hollas, Modern Spectroscopy, 2nd Ed.
[68] J.E. Braun, T.L. Grebner, H.J. Neusser, J. Phys. Chem. A 102 (1998) 3273.
[69] J.L. Lin, K.C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462
[70] Lin, J., Lin, J. L., and Tzeng, W. B. 2003, Chem. Phys. Lett., 370, 44.
[71] Y. Xie, H. Su, W. B. Tzeng, Chem. Phys. Lett. 394 (2004) 182.
[72] Y. Xie, J. L. Lin, W. B. Tzeng, Chem. Phys. 305 (2004) 285.