簡易檢索 / 詳目顯示

研究生: 李世彬
Lee, Shih-Pin
論文名稱: 鈣離子感知接受器在嗅覺誘發腎臟血液動力學變化與剛性勃起以及血管內皮上促進血小板依附作用的雙重角色
The Dual Role of Calcium-Sensing Receptors on Olfactory-induced Renal Hemodynamic Impairment and Rigid Erection and on Vascular Endothelial Platelet Adhesion
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 89
中文關鍵詞: 鈣離子感知接受器嗅覺腎交感神經活性腎臟血液動力學腎小球過濾率陰部交感神經活性陰莖勃起血管加壓素II溫韋伯氏凝血因子血小板依附凝血
英文關鍵詞: calcium-sensing receptor, olfaction, renal sympathetic nervous activity, renal hemodynamic, glomerular filtration rate, pudendal sympathetic nervous activities, penile erection, angiotensin II, von Willebrand factor, platelet adhesion, coagulation
DOI URL: http://doi.org/10.6345/DIS.NTNU.SLS.012.2018.D01
論文種類: 學術論文
相關次數: 點閱:202下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣離子感知接受器在身體內多種器官中扮演鈣離子濃度與特定多元胺濃度的感知功能。本研究論文首重於確立鈣離子感知接受器在嗅覺粘膜上與血管內皮中的表現,並以此為基礎探求其後續誘發之生理反應。
    透過組織免疫化學染色、免疫螢光呈色與西方墨點法,確立了鈣離子感知接受器確實會表現於嗅覺感覺神經元的纖毛與鞭毛上。透過鼻腔共染細胞內鈣離子螢光指示劑後,於嗅球上觀測到嗅神經在受到鈣離子感知接受器活化後出現顯著鈣離子內流的去極化現象。由此可知,大鼠嗅覺感覺神經元上的鈣離子感知接受器的活化會形成嗅覺衝動。
    在鈣離子感知接受器的活化劑與抑制劑的交叉比對實驗中,嗅覺神經上的鈣離子感知接受器的活化,會造成血壓上升、心跳變慢、腎交感神經活性強化與腎臟血流充盈度下降的現象。透過動態對比增強的腎臟核磁共振影像,本研究更發現鼻腔內鈣離子感知接受器的活化會導致腎過濾率的下降。與腎神經阻斷術的老鼠相比較後可以確定,腎臟的血流充盈度與腎過濾率的下降,皆為腎交感神經的活化所導致。
    鈣離子感知接受器會受到精胺的刺激所活化,同時精胺為構成精液氣味的主要的多元胺,因此嗅神經上鈣離子感知接受器的活化,極有可能會造成公大鼠的性功能展現差異。透過陰部神經活性與陰莖海綿體內壓的紀錄,嗅神經上鈣離子感知接受器的活化會透過增強陰部神經的活動造成大鼠在低強度的電刺激勃起下會出現剛性勃起。
    鈣離子本身過去一直被認為是促進凝血機制的重要一環,故本研究認為血管內皮上的鈣離子感知接受器或許與凝血機制有關聯。與過去的研究相符,血管內皮細胞具有鈣離子感知接受器的表現。透過離體的大鼠主動脈的測試可以發現到,血管內皮細胞的鈣離子感知接受器的活化會增強血小板對血管壁的依附性。進一步,我們在兩種腎臟疾病大鼠與人類冠狀動脈內皮初代細胞實驗中發現,血液中的血管加壓素II會增加血管內皮的鈣離子感知接受器,並使得血管內皮容易釋放出溫韋伯氏凝血因子並誘發血栓形成與動脈狹窄的問題。
    本研究證實鈣離子感知接受器在嗅神經與血管內皮上為功能性的表現。嗅覺上的鈣離子感知接受器的活化會強化全身性交感神經系統的活性並導致腎臟血液動力學的改變同時也會誘發公大鼠會出現剛性勃起。在血管內皮上的鈣離子感知接受器的活化會導致內皮釋放出溫韋伯氏凝血因子促進血小板對於血管壁的依附作用。本研究的結果證實了鈣離子感知接受器於嗅覺與凝血功能上的重要性。

    Calcium-sensing receptor is the calcium and polyamine detecting receptor expressed in multiple organs. In this research, we first focused on the expression of calcium-sensing receptor on olfactory epithelium and vascular endothelium. Based on this finding, we explored for the following physiological responses after the activation of calcium-sensing receptors.
    After immunohistochemistry, immunofluorescence and western blotting, we confirm the expression of calcium-sensing receptor on the cilia and flagella of olfactory sensory neuron. Nose-loading with calcium detecting dye, we observed the depolarization of olfactory sensory neuron after intranasal exposure with the agonists of calcium-sensing receptor. Therefore, the activation of calcium-sensing receptors on olfactory sensory neurons would forming olfactory stimulation in rats.
    Furthermore, the activation of olfactory calcium-sensing receptor would cause the increase of blood pressure and renal sympathetic nervous activities, the decrease of heart rate and renal blood flow. Through dynamic contrast-enhanced magnetic resonance renography, we further found that the activation of olfactory calcium-sensing receptor would decrease the renal filtration rate. Comparing with the data of renal denervated rats, we confirmed that the decrease of renal blood flow and renal filtration was caused via the increase of renal sympathetic nervous activities.
    Calcium-sensing receptor is activated by spermine which is the main polyamine contributing the favor of semen. Therefore, the activation of olfactory calcium-sensing receptor might relate with the modulation of sexual expression in male rats. Via the recording of pudendal sympathetic nervous activities and intracavernous pressure, the activation of olfactory calcium-sensing receptor would cause the rigid erection in cavernous nervous low-voltage electrical stimulation induced erection through the increase of pudendal sympathetic nervous activities.
    Since calcium is one main factor of coagulation, we consider the connection between coagulation and the calcium-sensing receptor on the vascular endothelium. Matched with past research, calcium-sensing receptor expressed on the vascular endothelium. In rat aorta in vitro experiment, we found the activation of endothelial calcium-sensing receptor would enhance the platelet adhesion. Furthermore, the increase of serum angiotensin II would increase the expression of calcium-sensing receptor and make the vascular endothelium easier to release von Willebrand factor to cause the thrombosis and arterial stenosis in two renal disease rat models and human coronary arterial endothelial primary cell experiment.
    In this research, we confirm the expression of calcium-sensing receptor on olfactory sensory neuron and vascular endothelium. The activation of olfactory calcium-sensing receptor would activate the global sympathetic nervous system to impair the renal hemodynamics and induce the rigid erection in cavernous nervous low-voltage electrical stimulation. The activation of endothelial calcium-sensing receptor would cause the release of von Willebrand factor from vascular endothelium and enhance the platelet adhesion. The results in this study confirm the importance of calcium-sensing receptor on olfaction and coagulation.

    Abstract 1 摘要 1 Abbreviation 4 Chapter 1. Introduction and Literature Review 5 1-1 Calcium-sensing Receptor in Vertebrates 6 1-2 Olfaction-induced Physiological Responses 8 1-3 Calcium CaSR and Platelet Adhesion 9 1-4 Research Aims 10 Chapter 2. Material and Methods 13 2-1 The functional discussions of CaSR in olfactory epithelium 14 2-1-1 Animals 14 2-1-2 Western Blot 14 2-1-3 Immunohistochemistry and IF 15 2-1-4 Animal preparation and olfactory CaSR activation 16 2-1-5 Nose-Loading Calcium Sensitive Dye 18 2-2 The physiological response after the activation of olfactory CaSR 19 2-2-1 Animals 19 2-2-2 Animal preparation and olfactory CaSR activation 19 2-2-3 Renal sympathetic nervous activities recording 20 2-2-4 Bilateral renal denervation 20 2-2-5 Real-time GFR detection by a magnetic resonance renography 20 2-2-6 Pudendal sympathetic nervous activities recording 21 2-2-7 Determination of intracavernous pressure level 22 2-2-8 Statistical analyses 22 2-3 The platelet adhesion and vascular endothelial CaSR 23 2-3-1 Animals 23 2-3-2 Renovascular hypertensive model 23 2-3-3 Chronic kidney disease model 24 2-3-4 Coronary arterial endothelial primary cell culture 25 2-3-5 Histology 25 2-3-6 Immunohistochemistry 25 2-3-7 Western Blot 26 2-3-8 Platelet fluorescent labeling 26 2-3-9 Aorta endothelium platelet adhesion test 27 2-3-10 Statistical analyses 27 Chapter 3. Results 29 3-1 The activation of CaSR induces the depolarization of olfactory sensory neuron 30 3-1-1 Western Blot 30 3-1-2 CaSR Expression on Olfactory Sensory Neuron 30 3-1-3 CaSR-Activated Olfactory Mapping on Olfactory Bulb 30 3-2 The sympathetic nervous activities were enhanced after the activation of olfactory CaSR 31 3-2-1 Olfactory CaSR activation on blood pressure and RSNA 31 3-2-2 Olfactory CaSR activation of single-unit RSNA 31 3-2-3 Olfactory CaSR activation on blood pressure and PSNA 32 3-2-4 Competitive inhibition of olfactory CaSR activation by antagonist and nasal cavity anesthetization by lidocaine 32 3-2-5 Activation of olfactory CaSR not osmotic stimulation depresses the RSNA 33 3-3 The hemodynamic changes in different organs after the activation of olfactory CaSR 33 3-3-1 Olfactory CaSR activation on renal hemodynamics in sham and bilateral renal denervated rats 34 3-3-2 Competitive inhibition of olfactory CaSR activation by antagonist and nasal cavity anesthetization by lidocaine 35 3-3-3 Activation of olfactory CaSR not osmotic stimulation depresses the renal hemodynamic 36 3-3-4 Olfactory CaSR activation on glomerular filtration rate 36 3-3-5 Olfactory CaSR activation on hepatic and enteral hemodynamics 37 3-3-6 Olfactory CaSR activation on intracavernous pressure levels 38 3-4 Platelet adhesion after the activation of vascular endothelial CaSR 39 3-4-1 Physiological conditions between RVHT and sham 39 3-4-2 The pathological changes in cardiomyocyte and coronary artery in RVHT rats 39 3-4-3 RVHT rats showed higher expression levels of CaSR, vWF and tissue factor in vascular endothelium 40 3-4-4 Angiotensin II increased the expression level of CaSR in HCAEC 40 3-4-5 The activation of vascular endothelium CaSR initiate the platelet adhesion in aorta 40 Chapter 4. Discussion and Conclusion 42 4-1 The functional expression of CaSR in olfactory epithelium 43 4-2 The activation of olfactory CaSR impairs the renal hemodynamics via sympathetic nerve-mediated vasoconstriction 43 4-3 The activation of olfactory CaSR induced further erection via the enhancement of pudendal sympathetic nervous activities 48 4-4 The activation of vascular endothelial CaSR induced platelet adhesion 49 4-5 Conclusion 51 4-6 Future Works 52 Reference 53

    1. Brown, EM, Gamba, G, Riccardi, D, Lombardi, M, Butters, R, Kifor, O, Sun, A, Hediger, MA, Lytton, J, Hebert, SC: Cloning and Characterization of an Extracellular Ca2+-Sensing Receptor from Bovine Parathyroid. Nature, 366: 575-580, 1993.
    2. Pin, JP, Galvez, T, Prezeau, L: Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Therapeut, 98: 325-354, 2003.
    3. Quinn, SJ, Thomsen, AR, Egbuna, O, Pang, J, Baxi, K, Goltzman, D, Pollak, M, Brown, EM: CaSR-mediated interactions between calcium and magnesium homeostasis in mice. American journal of physiology Endocrinology and metabolism, 304: E724-733, 2013.
    4. Alfadda, TI, Saleh, AM, Houillier, P, Geibel, JP: Calcium-sensing receptor 20 years later. American journal of physiology Cell physiology, 307: C221-231, 2014.
    5. Gogusev, J, Duchambon, P, Hory, B, Giovannini, M, Goureau, Y, Sarfati, E, Drueke, TB: Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney international, 51: 328-336, 1997.
    6. Brown, EM: Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord, 1: 307-315, 2000.
    7. Chattopadhyay, N, Cheng, I, Rogers, K, Riccardi, D, Hall, A, Diaz, R, Hebert, SC, Soybel, DI, Brown, EM: Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. The American journal of physiology, 274: G122-130, 1998.
    8. Huang, Y, Zhou, Y, Yang, W, Butters, R, Lee, HW, Li, S, Castiblanco, A, Brown, EM, Yang, JJ: Identification and dissection of Ca(2+)-binding sites in the extracellular domain of Ca(2+)-sensing receptor. The Journal of biological chemistry, 282: 19000-19010, 2007.
    9. Yamaguchi, T, Chattopadhyay, N, Kifor, O, Butters, RR, Jr., Sugimoto, T, Brown, EM: Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res, 13: 1530-1538, 1998.
    10. Kanatani, M, Sugimoto, T, Kanzawa, M, Yano, S, Chihara, K: High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochemical and biophysical research communications, 261: 144-148, 1999.
    11. Dvorak, MM, Chen, TH, Orwoll, B, Garvey, C, Chang, W, Bikle, DD, Shoback, DM: Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology, 148: 3156-3163, 2007.
    12. Dvorak-Ewell, MM, Chen, TH, Liang, N, Garvey, C, Liu, B, Tu, C, Chang, W, Bikle, DD, Shoback, DM: Osteoblast extracellular Ca2+ -sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res, 26: 2935-2947, 2011.
    13. Riccardi, D, Lee, WS, Lee, KC, Segre, GV, Brown, EM, Hebert, SC: Localization of the extracellular Ca2+-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol-Renal, 271: F951-F956, 1996.
    14. Ortiz-Capisano, MC, Reddy, M, Mendez, M, Garvin, JL, Beierwaltes, WH: Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP(3) pathway and the ryanodine receptor. American journal of physiology Renal physiology, 304: F248-256, 2013.
    15. Ba, JM, Brown, D, Friedman, PA: Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. American Journal of Physiology-Renal Physiology, 285: F1233-F1243, 2003.
    16. Watanabe, S, Fukumoto, S, Chang, HG, Takeuchi, Y, Hasegawa, Y, Okazaki, R, Chikatsu, N, Fujita, T: Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet, 360: 692-694, 2002.
    17. Topala, CN, Schoeber, JP, Searchfield, LE, Riccardi, D, Hoenderop, JG, Bindels, RJ: Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell calcium, 45: 331-339, 2009.
    18. Procino, G, Carmosino, M, Tamma, G, Gouraud, S, Laera, A, Riccardi, D, Svelto, M, Valenti, G: Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney international, 66: 2245-2255, 2004.
    19. Kos, CH, Karaplis, AC, Peng, JB, Hediger, MA, Goltzman, D, Mohammad, KS, Guise, TA, Pollak, MR: The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. The Journal of clinical investigation, 111: 1021-1028, 2003.
    20. Bodznick, D: Calcium ion: An odorant for natural water discriminations and the migratory behavior of sockeye salmon. J Comp Physiol, 127: 157-166, 1978.
    21. Hubbard, PC, Barata, EN, Canario, AV: Olfactory sensitivity to changes in environmental [Ca(2+)] in the marine teleost Sparus aurata. The Journal of experimental biology, 203: 3821-3829, 2000.
    22. Hubbard, PC, Ingleton, PM, Bendell, LA, Barata, EN, Canario, AV: Olfactory sensitivity to changes in environmental [Ca(2+)] in the freshwater teleost Carassius auratus: an olfactory role for the Ca(2+)-sensing receptor? The Journal of experimental biology, 205: 2755-2764, 2002.
    23. Nearing, J, Betka, M, Quinn, S, Hentschel, H, Elger, M, Baum, M, Bai, M, Chattopadyhay, N, Brown, EM, Hebert, SC, Harris, HW: Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proceedings of the National Academy of Sciences of the United States of America, 99: 9231-9236, 2002.
    24. Dukes, JP, Deaville, R, Gottelli, D, Neigel, JE, Bruford, MW, Jordan, WC: Isolation and characterisation of main olfactory and vomeronasal receptor gene families from the Atlantic salmon (Salmo salar). Gene, 371: 257-267, 2006.
    25. Herberger, AL, Loretz, CA: Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat. Comp Biochem Physiol Part D Genomics Proteomics, 8: 86-94, 2013.
    26. Williamsashman, HG: Role of Polyamines in Reproductive Physiology and Sex Hormone Action. Annals of the New York Academy of Sciences, 171: 882-+, 1970.
    27. Quinn, SJ, Ye, CP, Diaz, R, Kifor, O, Bai, M, Vassilev, P, Brown, E: The Ca2+-sensing receptor: a target for polyamines. The American journal of physiology, 273: C1315-1323, 1997.
    28. Hoon, MA, Adler, E, Lindemeier, J, Battey, JF, Ryba, NJ, Zuker, CS: Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell, 96: 541-551, 1999.
    29. Bukoski, RD, Bian, K, Wang, Y, Mupanomunda, M: Perivascular sensory nerve Ca2+ receptor and Ca2+-induced relaxation of isolated arteries. Hypertension, 30: 1431-1439, 1997.
    30. Wang, Y, Bukoski, RD: Distribution of the perivascular nerve Ca2+ receptor in rat arteries. Br J Pharmacol, 125: 1397-1404, 1998.
    31. Ohanian, J, Gatfield, KM, Ward, DT, Ohanian, V: Evidence for a functional calcium-sensing receptor that modulates myogenic tone in rat subcutaneous small arteries. Am J Physiol Heart Circ Physiol, 288: H1756-1762, 2005.
    32. Weston, AH, Absi, M, Ward, DT, Ohanian, J, Dodd, RH, Dauban, P, Petrel, C, Ruat, M, Edwards, G: Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circulation research, 97: 391-398, 2005.
    33. Ziegelstein, RC, Xiong, Y, He, C, Hu, Q: Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem Biophys Res Commun, 342: 153-163, 2006.
    34. Molostvov, G, James, S, Fletcher, S, Bennett, J, Lehnert, H, Bland, R, Zehnder, D: Extracellular calcium-sensing receptor is functionally expressed in human artery. American journal of physiology Renal physiology, 293: F946-955, 2007.
    35. Chow, JY, Estrema, C, Orneles, T, Dong, X, Barrett, KE, Dong, H: Calcium-sensing receptor modulates extracellular Ca(2+) entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells. American journal of physiology Cell physiology, 301: C461-468, 2011.
    36. Smajilovic, S, Hansen, JL, Christoffersen, TEH, Lewin, E, Sheikh, SP, Terwilliger, EF, Brown, EM, Haunso, S, Tfelt-Hansen, J: Extracellular calcium sensing in rat aortic vascular smooth muscle cells. Biochemical and biophysical research communications, 348: 1215-1223, 2006.
    37. Shalhoub, V, Shatzen, E, Henley, C, Boedigheimer, M, McNinch, J, Manoukian, R, Damore, M, Fitzpatrick, D, Haas, K, Twomey, B, Kiaei, P, Ward, S, Lacey, DL, Martin, D: Calcification inhibitors and Wnt signaling proteins are implicated in bovine artery smooth muscle cell calcification in the presence of phosphate and vitamin D sterols. Calcified Tissue Int, 79: 431-442, 2006.
    38. Farzaneh-Far, A, Proudfoot, D, Weissberg, PL, Shanahan, CM: Matrix Gla protein is regulated by a mechanism functionally related to the calcium-sensing receptor. Biochemical and biophysical research communications, 277: 736-740, 2000.
    39. Alam, MU, Kirton, JP, Wilkinson, FL, Towers, E, Sinha, S, Rouhi, M, Vizard, TN, Sage, AP, Martin, D, Ward, DT, Alexander, MY, Riccardi, D, Canfield, AE: Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovascular research, 81: 260-268, 2009.
    40. Ohanian, J, Gatfield, KM, Ward, DT, Ohanian, V: Evidence for a functional calcium-sensing receptor that modulates myogenic tone in rat subcutaneous small arteries. Am J Physiol-Heart C, 288: H1756-H1762, 2005.
    41. Schepelmann, M, Yarova, PL, Lopez-Fernandez, I, Davies, TS, Brennan, SC, Edwards, PJ, Aggarwal, A, Graca, J, Rietdorf, K, Matchkov, V, Fenton, RA, Chang, W, Krssak, M, Stewart, A, Broadley, KJ, Ward, DT, Price, SA, Edwards, DH, Kemp, PJ, Riccardi, D: The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. American journal of physiology Cell physiology, 310: C193-204, 2016.
    42. Ziegelstein, RC, Xiong, YL, He, CX, Hu, QH: Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochemical and biophysical research communications, 342: 153-163, 2006.
    43. Tirard, A, Renucci, M, Provost, E, Khlat, J, Clement, JL: Are polyamines involved in olfaction? An EAG and biochemical study in Periplaneta americana antennae. Chem Senses, 27: 417-423, 2002.
    44. Motofei, IG: A dual physiological character for sexual function: libido and sexual pheromones. Bju International, 104: 1702-1708, 2009.
    45. Grosmaitre, X, Santarelli, LC, Tan, J, Luo, MM, Ma, MH: Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nature neuroscience, 10: 348-354, 2007.
    46. Cha, JH, Lee, SH, Yoo, YS: [Effects of aromatherapy on changes in the autonomic nervous system, aortic pulse wave velocity and aortic augmentation index in patients with essential hypertension]. J Korean Acad Nurs, 40: 705-713, 2010.
    47. Shen, J, Niijima, A, Tanida, M, Horii, Y, Maeda, K, Nagai, K: Olfactory stimulation with scent of grapefruit oil affects autonomic nerves, lipolysis and appetite in rats. Neuroscience letters, 380: 289-294, 2005.
    48. Tanida, M, Niijima, A, Shen, J, Nakamura, T, Nagai, K: Olfactory stimulation with scent of essential oil of grapefruit affects autonomic neurotransmission and blood pressure. Brain research, 1058: 44-55, 2005.
    49. Tanida, M, Shen, J, Niijima, A, Yamatodani, A, Oishi, K, Ishida, N, Nagai, K: Effects of olfactory stimulations with scents of grapefruit and lavender oils on renal sympathetic nerve and blood pressure in Clock mutant mice. Autonomic neuroscience : basic & clinical, 139: 1-8, 2008.
    50. Tanida, M, Yamatodani, A, Niijima, A, Shen, J, Todo, T, Nagai, K: Autonomic and cardiovascular responses to scent stimulation are altered in cry KO mice. Neuroscience letters, 413: 177-182, 2007.
    51. Edwards, DA, Davis, AB: Deafferentation of the olfactory bulbs of male rats reduces erection to remote cues from females. Physiology & behavior, 62: 145-149, 1997.
    52. Sachs, BD: Erection evoked in male rats by airborne scent from estrous females. Physiology & behavior, 62: 921-924, 1997.
    53. Dean, RC, Lue, TF: Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am, 32: 379-395, v, 2005.
    54. Giuliano, F, Rampin, O, Jardin, A, Rousseau, JP: Electrophysiological Study of Relations between the Dorsal Nerve of the Penis and the Lumbar Sympathetic Chain in the Rat. J Urology, 150: 1960-1964, 1993.
    55. Carrier, S, Zvara, P, Nunes, L, Kour, NW, Rehman, J, Lue, TF: Regeneration of nitric oxide synthase-containing nerves after cavernous nerve neurotomy in the rat. The Journal of urology, 153: 1722-1727, 1995.
    56. Varga-Szabo, D, Braun, A, Kleinschnitz, C, Bender, M, Pleines, I, Pham, M, Renne, T, Stoll, G, Nieswandt, B: The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. Journal of Experimental Medicine, 205: 1583-1591, 2008.
    57. Gilio, K, van Kruchten, R, Braun, A, Berna-Erro, A, Feijge, MAH, Stegner, D, van der Meijden, PEJ, Kuijpers, MJE, Varga-Szabo, D, Heemskerk, JWM, Nieswandt, B: Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation. Journal of Biological Chemistry, 285: 23629-23638, 2010.
    58. Savage, B, Saldivar, E, Ruggeri, ZM: Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell, 84: 289-297, 1996.
    59. Tsai, HM: Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood, 87: 4235-4244, 1996.
    60. Jakobi, AJ, Mashaghi, A, Tans, SJ, Huizinga, EG: Calcium modulates force sensing by the von Willebrand factor A2 domain. Nature communications, 2, 2011.
    61. Mogielnicki, A, Chabielska, E, Pawlak, R, Szemraj, J, Buczko, W: Angiotensin II enhances thrombosis development in renovascular hypertensive rats. Thrombosis and haemostasis, 93: 1069-1076, 2005.
    62. Wang, LN, Wang, C, Lin, Y, Xi, YH, Zhang, WH, Zhao, YJ, Li, HZ, Tian, Y, Lv, YJ, Yang, BF, Xu, CQ: Involvement of calcium-sensing receptor in cardiac hypertrophy-induced by angiotensinII through calcineurin pathway in cultured neonatal rat cardiomyocytes. Biochemical and biophysical research communications, 369: 584-589, 2008.
    63. Bai, M, Trivedi, S, Brown, EM: Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. The Journal of biological chemistry, 273: 23605-23610, 1998.
    64. McClintock, TS, Glasser, CE, Bose, SC, Bergman, DA: Tissue expression patterns identify mouse cilia genes. Physiol Genomics, 32: 198-206, 2008.
    65. Wong, ST, Trinh, K, Hacker, B, Chan, GC, Lowe, G, Gaggar, A, Xia, Z, Gold, GH, Storm, DR: Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron, 27: 487-497, 2000.
    66. Yarova, PL, Stewart, AL, Sathish, V, Britt, RD, Jr., Thompson, MA, AP, PL, Freeman, M, Aravamudan, B, Kita, H, Brennan, SC, Schepelmann, M, Davies, T, Yung, S, Cholisoh, Z, Kidd, EJ, Ford, WR, Broadley, KJ, Rietdorf, K, Chang, W, Bin Khayat, ME, Ward, DT, Corrigan, CJ, JP, TW, Kemp, PJ, Pabelick, CM, Prakash, YS, Riccardi, D: Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med, 7: 284ra260, 2015.
    67. Foster, ML, Rao, DB, Francher, T, Traver, S, Dorman, DC: Olfactory toxicity in rats following manganese chloride nasal instillation: A pilot study. Neurotoxicology, 64: 284-290, 2018.
    68. Yamamura, A, Guo, Q, Yamamura, H, Zimnicka, AM, Pohl, NM, Smith, KA, Fernandez, RA, Zeifman, A, Makino, A, Dong, H, Yuan, JX: Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circulation research, 111: 469-481, 2012.
    69. Ma, JN, Owens, M, Gustafsson, M, Jensen, J, Tabatabaei, A, Schmelzer, K, Olsson, R, Burstein, ES: Characterization of highly efficacious allosteric agonists of the human calcium-sensing receptor. The Journal of pharmacology and experimental therapeutics, 337: 275-284, 2011.
    70. Smith, RC, Litwin, MS, Lu, Y, Zetter, BR: Identification of an endogenous inhibitor of prostatic carcinoma cell growth. Nat Med, 1: 1040-1045, 1995.
    71. Wachowiak, M, Cohen, LB: Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron, 32: 723-735, 2001.
    72. Chien, CT, Yu, HJ, Cheng, YJ, Wu, MS, Chen, CF, Hsu, SM: Reduction in renal haemodynamics by exaggerated vesicovascular reflex in rats with acute urinary retention. The Journal of physiology, 526 Pt 2: 397-408, 2000.
    73. Yao, Y, Fomison-Nurse, IC, Harrison, JC, Walker, RJ, Davis, G, Sammut, IA: Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy. American journal of physiology Renal physiology, 307: F251-262, 2014.
    74. Annet, L, Hermoye, L, Peeters, F, Jamar, F, Dehoux, JP, Van Beers, BE: Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. Journal of magnetic resonance imaging : JMRI, 20: 843-849, 2004.
    75. Zollner, FG, Zimmer, F, Klotz, S, Hoeger, S, Schad, LR: Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus two-compartment filtration model. Magnetic resonance imaging, 32: 781-785, 2014.
    76. Zhang, YD, Wu, CJ, Zhang, J, Wang, XN, Liu, XS, Shi, HB: Feasibility study of high-resolution DCE-MRI for glomerular filtration rate (GFR) measurement in a routine clinical modal. Magnetic resonance imaging, 2015.
    77. Zollner, FG, Zimmer, F, Klotz, S, Hoeger, S, Schad, LR: Functional imaging of acute kidney injury at 3 Tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Zeitschrift fur medizinische Physik, 25: 58-65, 2015.
    78. Giuliano, F, Pfaus, J, Srilatha, B, Hedlund, P, Hisasue, S, Marson, L, Wallen, K: Experimental models for the study of female and male sexual function. J Sex Med, 7: 2970-2995, 2010.
    79. Chauhan, AK, Kisucka, J, Cozzi, MR, Walsh, MT, Moretti, FA, Battiston, M, Mazzucato, M, De Marco, L, Baralle, FE, Wagner, DD, Muro, AF: Prothrombotic effects of fibronectin Isoforms containing the EDA domain. Arterioscl Throm Vas, 28: 296-301, 2008.
    80. Chauhan, AK, Motto, DG, Lamb, CB, Bergmeier, W, Dockal, M, Plaimauer, B, Scheiflinger, F, Ginsburg, D, Wagner, DD: Systemic antithrombotic effects of ADAMTS13. The Journal of experimental medicine, 203: 767-776, 2006.
    81. Malnic, B, Hirono, J, Sato, T, Buck, LB: Combinatorial receptor codes for odors. Cell, 96: 713-723, 1999.
    82. Naito, T, Saito, Y, Yamamoto, J, Nozaki, Y, Tomura, K, Hazama, M, Nakanishi, S, Brenner, S: Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proceedings of the National Academy of Sciences of the United States of America, 95: 5178-5181, 1998.
    83. van Acker, BA, Koomen, GC, Koopman, MG, de Waart, DR, Arisz, L: Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet, 340: 1326-1329, 1992.
    84. Denton, KM, Luff, SE, Shweta, A, Anderson, WP: Differential neural control of glomerular ultrafiltration. Clinical and experimental pharmacology & physiology, 31: 380-386, 2004.
    85. Chen, SS, Yang, CC, Chien, CT: Colorectal distension enforce acute urinary bladder distension-induced hepatic vasoconstriction in the rat. Neuroscience letters, 443: 257-260, 2008.
    86. Chaudhuri, KR, Thomaides, T, Hernandez, P, Alam, M, Mathias, CJ: Noninvasive quantification of superior mesenteric artery blood flow during sympathoneural activation in normal subjects. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 1: 37-42, 1991.
    87. Barrington, WW, Angle, CR, Willcockson, NK, Padula, MA, Korn, T: Autonomic function in manganese alloy workers. Environ Res, 78: 50-58, 1998.
    88. Cooper, WC: The health implications of increased manganese in the environment resulting from the combustion of fuel additives: a review of the literature. J Toxicol Environ Health, 14: 23-46, 1984.
    89. Bahar, E, Lee, GH, Bhattarai, KR, Lee, HY, Kim, HK, Handigund, M, Choi, MK, Han, SY, Chae, HJ, Yoon, H: Protective role of quercetin against manganese-induced injury in the liver, kidney, and lung; and hematological parameters in acute and subchronic rat models. Drug Des Devel Ther, 11: 2605-2619, 2017.
    90. Chen, SS, Chen, WC, Hayakawa, S, Li, PC, Chien, CT: Acute urinary bladder distension triggers ICAM-1-mediated renal oxidative injury via the norepinephrine-renin-angiotensin II system in rats. J Formos Med Assoc, 108: 627-635, 2009.
    91. Posadzki, P, Alotaibi, A, Ernst, E: Adverse effects of aromatherapy: a systematic review of case reports and case series. Int J Risk Saf Med, 24: 147-161, 2012.
    92. Pfaus, JG: Pathways of sexual desire. J Sex Med, 6: 1506-1533, 2009.
    93. Helmchen, U, Grone, HJ, Kirchertz, EJ, Bader, H, Bohle, RM, Kneissler, U, Khosla, MC: Contrasting Renal Effects of Different Antihypertensive Agents in Hypertensive Rats with Bilaterally Constricted Renal-Arteries. Kidney international: S198-S205, 1982.
    94. Zeng, JS, Zhang, YQ, Mo, JW, Su, ZP, Huang, RX: Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke; a journal of cerebral circulation, 29: 1708-1713, 1998.
    95. Wachtell, K, Lehto, M, Gerdts, E, Olsen, MH, Hornestam, B, Dahlof, B, Ibsen, H, Julius, S, Kjeldsen, SE, Lindholm, LH, Nieminen, MS, Devereux, RB: Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol - The Losartan Intervention For End point reduction in hypertension (LIFE) study. Journal of the American College of Cardiology, 45: 712-719, 2005.
    96. Birch, KA, Pober, JS, Zavoico, GB, Means, AR, Ewenstein, BM: Calcium Calmodulin Transduces Thrombin-Stimulated Secretion - Studies in Intact and Minimally Permeabilized Human Umbilical Vein Endothelial-Cells. Journal of Cell Biology, 118: 1501-1510, 1992.
    97. Molostvov, G, Fletcher, S, Bland, R, Zehnder, D: Extracellular calcium-sensing receptor mediated signalling is involved in human vascular smooth muscle cell proliferation and apoptosis. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 22: 413-422, 2008.
    98. Radomski, MW, Palmer, RMJ, Moncada, S: The Role of Nitric-Oxide and Cgmp in Platelet-Adhesion to Vascular Endothelium. Biochemical and biophysical research communications, 148: 1482-1489, 1987.
    99. Zhang, Z, Wang, M, Xue, SJ, Liu, DH, Tang, YB: Simvastatin Ameliorates Angiotensin II-Induced Endothelial Dysfunction Through Restoration of Rho-BH4-eNOS-NO Pathway. Cardiovasc Drug Ther, 26: 31-40, 2012.
    100. Lee, BK, Kim, Y: Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008. Environ Res, 111: 797-803, 2011.

    下載圖示
    QR CODE