研究生: |
桂思緹 Acabado, Cristy Sales |
---|---|
論文名稱: |
黑潮流域海底山之克赫波(Kelvin-Helmholtz billows)對海洋上層生態系統的影響 The Response of Epipelagic Ecosystems to Kelvin-Helmholtz Billows over a Seamount in the Kuroshio |
指導教授: |
陳仲吉
Chen, Chung-Chi 張明輝 Chang, Ming-Huei |
口試委員: |
夏復國
Shiah, Fuh-Kwo 謝志豪 Hsieh, Chih-hao 町田龍二 Machida, Ryuji 陳仲吉 Chen, Chung-Chi 張明輝 Chang, Ming-Huei |
口試日期: | 2022/01/18 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 克赫波 、硝酸鹽通量 、海底山 、黑潮 、超微浮游生物 、浮游動物 |
英文關鍵詞: | Kelvin-Helmholtz billows, Nitrate flux, Seamount, The Kuroshio, Picoplankton, Zooplankton |
研究方法: | 實驗設計法 、 現象學 、 調查研究 、 比較研究 、 觀察研究 、 田野調查法 |
DOI URL: | http://doi.org/10.6345/NTNU202200326 |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
克赫波可以驅動流經貧營養鹽黑潮在海底山周邊小尺度的海水混合。本研究目標主要探討不同之克赫波强度(或大小),包括「間歇小型」的小波狀況(small billow case; SBC)與「穩定大型」的大波狀况(large billow case; LBC)之克赫波對本海域硝酸鹽垂直通量的影響,並進一步瞭解其在海底山周遭生態系,不同環境條件下對超微型浮游生物及浮游動物組成之影響(第一章)。克赫波所造成之亂流動能耗散率 (turbulent kinetic energy dissipation rate; ε = O (10-7–10-6) W kg-1) 及渦流擴散率 (eddy diffusivities; Kρ = O (10-4–10-3) m2 s-1) 明顯高於無克赫波(時),利用在此波內 Kρ 所估算之平均硝酸鹽通量最大值為 10.0 mmol m-2 day-1,此值遠高於黑潮流域之平均值(第二章);在較淺層形成的克赫波所攜入的硝酸鹽通量,將豐富次表層海域的無機營養鹽濃度;而靠近海底山頂較深的克赫波,則將會更有效率的從更深層水體中垂直向上傳輸豐富的硝酸鹽。另一方面,海底山周遭海域的超微浮游生物主要以異營性細菌為主(>50%; 第三章);然而,由於聚球藻生物量的增加,在海底山測站超微浮游生物的結果顯示出與近岸海域相似的生物碳量;此結果建議在貧營養鹽水體的黑潮流域,其海底山及其周圍海域有類似沿岸海域海水的特性。另外,在冬季航次時黑潮有較強勁流速,其浮游動物生物量(SKC; 104.5 ml 100m-3)較夏季航次黑潮流速較弱時(WKC; 33.7 ml 100m-3)高出60%以上,但此差異可能主要是受到季節性的影響所致(第四章);另外,由浮游動物豐度的分布結果,顯示出海底山地形所形成的「阻塞效應」(blocking effect),會將它們聚集在海底山周遭與其側翼;然而,較強的黑潮海流時(例如SKC)可消除阻塞效應,並將浮游生物快速帶往下游。而在海底山周遭亦觀測到仔稚魚個體早期發育階段,顯見海底山有利於作為魚類產卵和繁殖的棲地。整體而言,本研究顯示黑潮流域海底山之克赫波,對海底山生態系统之養分循環與垂直混和,對此海域的生產力與下游能量具有重要貢獻,並顯示海底山在貧養鹽黑潮海域扮演生命綠洲的角色。
Kelvin-Helmholtz (KH) billows can drive microscale turbulent mixing around seamounts in the oligotrophic Kuroshio. This study sought to describe the influence of billow intensity, i.e., “intermittent and small” (small billow case; SBC) and “steady and large” billows (large billow case; LBC), on vertical nitrate fluxes, and to illustrate the responses of picoplankton and zooplankton assemblages to the varying environmental conditions on seamounts (Chapter 1). KH billows led to turbulent kinetic energy dissipation rates (ε = O (10-7–10-6) W kg-1) and eddy diffusivities (Kρ = O (10-4–10-3) m2 s-1) that were significantly stronger than those outside the billow depths. The mean nitrate flux estimated using Kρ in the billow depths had a maximal value of 10.0 mmol m-2 day-1, which was much higher than estimates for the open ocean (Chapter 2). The nitrate flux associated with the shallow KH billows contributed to subsurface enrichment by entraining existing nutrients, while the flux of deeper billows closer to the summit were more effective in vertically transporting nitrates directly from the deeper water. On the other hand, the picoplankton around the seamount area was consistently dominated by heterotrophic bacteria (>50%; Chapter 3). The on-seamount station showed similar carbon biomass in comparison with those in onshore areas due to the increase in Synechococcus biomass. This suggests that a small area along the Kuroshio features coastal water-like properties near and around the seamount in oligotrophic waters. In addition, the zooplankton biomass was over 60% larger during the winter cruise when the Kuroshio’s velocity was strong (SKC; 104.5 ml 100m-3) than in the summer cruise when the Kuroshio was weaker (WKC; 33.7 ml 100m-3), and this variation was more likely influenced by the sampling season (Chapter 4). Furthermore, the distribution pattern of zooplankton concentrations revealed a seamount-induced “blocking effect”, which aggregates them within the impeding seamount and its flanks. However, a strong Kuroshio current can dismantle the blocking effect and quickly sweep the plankton away (i.e., SKC). Moreover, the high relative contributions of very early ontogenetic stages of larval fish underscored the importance of the seamount as an isolated habitat good for spawning and as a source of fish recruits. Overall, this study showed that KH billows make important contributions to seamount ecosystems, particularly in the cycling and vertical mixing of nutrients to make them available for local production and potential downstream transport. At the same time, this study exemplified the role of seamounts as the oasis of life in oligotrophic areas.
REFERENCES
Acabado, C. S., Cheng, Y.-H., Chang, M.-H., & Chen, C.-C. (2021). Vertical Nitrate Flux Induced by Kelvin–Helmholtz Billows Over a Seamount in the Kuroshio. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.680729
Agawin, N. S. R., Duarte, C. M., & Agustı, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr., 45(3), 591-600. doi:10.4319/lo.2000.45.3.0591
Aguilar, D. A., & Sutherland, B. R. (2006). Internal wave generation from rough topography. Physics of Fluids, 18(6), 066603. doi:10.1063/1.2214538
Ambaum, M. H., & Marshall, D. P. (2005). The Effects of Stratification on Flow Separation. Journal of the Atmospheric Sciences, 62, 2618-2625. doi:10.1175/JAS3485.1
Barkley, R. A. (1970). The Kuroshio Current. Science Journal, 6, 54-60.
Barton, A. D., Ward, B. A., Williams, R. G., & Follows, M. J. (2014). The impact of fine-scale turbulence on phytoplankton community structure. Limnology and Oceanography, 4, 34-49. doi:10.1215/21573689-2651533
Batiza, R. (1982). Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth and Planetary Science Letters, 60, 195-206.
Biggs, B. J. F., & Thomsen, H. A. (1995). Disturbance in stream periphyton by perturbations in shear stress: time to structural failure and differences in community resistance. Journal of Phycology, 31, 233-241.
Blumen, W., Banta, R., Burns, S. P., Fritts, D. C., Newsom, R., Poulos, G. S., & Sun, J. (2001). Turbulence statistics of a Kelvin–Helmholtz billow event observed in the night-time boundary layer during the cooperative atmosphere–surface exchange study field program. Dynamics of Atmospheres and Oceans, 34, 189-204. doi:10.1016/S0377-0265(01)00067-7
Boehlert, G. W. (1988). Current-topography interactions at mid-ocean seamounts and the impact on pelagic ecosystems. GeoJournal, 16(1), 45-52. doi:10.1007/BF02626371
Boehlert, G. W., & Genin, A. (1987). A review of the effects of seamounts on biological processes Seamounts, Islands and Atolls (Vol. 43, pp. 319-334): Geophysical Monographs.
Boehlert, G. W., & Mundy, B. C. (1993). Ichthyoplankton assemblages at seamounts and oceanic islands. Bull. Mar. Sci., 53(2), 336-361.
Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., . . . McManus, G. B. (2012). Picophytoplankton biomass distribution in the global ocean. Earth System Science Data, 4(1), 37-46. doi:10.5194/essd-4-37-2012
Calvo-Diaz, A., Diaz-Perez, L., Suarez, L. A., Moran, X. A., Teira, E., & Maranon, E. (2011). Decrease in the autotrophic-to-heterotrophic biomass ratio of picoplankton in oligotrophic marine waters due to bottle enclosure. Appl Environ Microbiol, 77(16), 5739-5746. doi:10.1128/AEM.00066-11
Carmo, V., Santos, M., Menezes, G. M., Loureiro, C. M., Lambardi, P., & Martins, A. (2013). Variability of zooplankton communities at Condor Seamount and surrounding areas, Azores (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography, 98, 63-74. doi:10.1016/j.dsr2.2013.08.007
Carpenter, K. E., & Niem, V. H. (2001). FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific (Vol. 3-6). Rome: FAO.
Casottila, R., Brunet, C., Aronne, B., & d'Alcalala, M. R. (2000). Mesoscale features of phytoplankton and planktonic bacteria in a coastal area as induced by external water masses. Marine Ecology Progress Series, 195, 15-27. doi:10.3354/meps195015
Chang, M. H. (2021). Marginal Instability Within Internal Solitary Waves. Geophysical Research Letters, 48(9). doi:10.1029/2021gl092616
Chang, M. H., Jan, S., Mensah, V., Andres, M., Rainville, L., Yang, Y. J., & Cheng, Y. H. (2018). Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I: Oceanographic Research Papers, 131, 1-15. doi:10.1016/j.dsr.2017.11.006
Chang, M. H., Jheng, S. Y., & Lien, R. C. (2016). Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount. Geophysical Research Letters, 43(16), 8654-8661. doi:10.1002/2016gl069462
Chang, M. H., Tang, T. Y., Ho, C. R., & Chao, S. Y. (2013). Kuroshio-induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans, 118(3), 1508-1519. doi:10.1002/jgrc.20151
Chen, C.-C., Lu, C.-Y., Jan, S., Hsieh, C.-H., & Chung, C.-C. (2022). Effects of the coastal uplift on the Kuroshio ecosystem, eastern Taiwan, the western boundary current of the North Pacific Ocean. Frontiers in Marine Science, 9:796187. doi:10.3389/fmars.2022.796187
Chen, C. A., Huang, T. H., Wu, C. H., Yang, H., & Guo, X. (2021). Variability of the nutrient stream near Kuroshio's origin. Sci Rep, 11(1), 5080. doi:10.1038/s41598-021-84420-5
Chen, C. C., Jan, S., Kuo, T. H., & Li, S. Y. (2017). Nutrient flux and transport by the Kuroshio east of Taiwan. Journal of Marine Systems, 167, 43-54. doi:10.1016/j.jmarsys.2016.11.004
Chen, Y. L., Chen, H. Y., Tuo, S. H., & Ohki, K. (2008). Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnol. Oceanogr., 53(5), 1705-1721.
Cheng, Y. H., Chang, M. H., Ko, D. S., Jan, S., Andres, M., Kirincich, A., . . . Tai, J. H. (2020). Submesoscale Eddy and Frontal Instabilities in the Kuroshio Interacting With a Cape South of Taiwan. Journal of Geophysical Research: Oceans, 125(5). doi:10.1029/2020jc016123
Christaki, U., Jacquet, S., Dolan, J. R., Vaulot, D., & Rassoulzadegan, F. (1999). Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr., 44(1). doi:10.4319/lo.1999.44.1.0052
Clark, M. R. (2009). Deep sea seamount fisheries: a review of global status and future prospects. Latin American Journal of Aquatic Research, 37(3), 501-512. doi:10.3856/vol37-issue3-fulltext-17
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143. doi:10.1111/j.1442-9993.1993.tb00438.x
de Boyer Montégut, C., Madec, G., Fischer, A., Lazar, A., & Iudicone, D. (2004). Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12). doi:10.1029/2004jc002378
De Silva, I. P. D., Fernando, H. J. S., Eaton, F., & Hebert, D. (1996). Evolution of Kelvin-Helmholtz billows in nature and laboratory. Earth and Planetary Science Letters, 143, 217-231. doi:10.1016/0012-821X(96)00129-X
Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research, 87(C12). doi:10.1029/JC087iC12p09601
Doledec, S., & Chessel, D. (1994). Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology, 31(3), 277-294. doi:10.1111/j.1365-2427.1994.tb01741.x
Dower, J., & Mackas, D. (1996). “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Research 1, 43(6), 837-858. doi:10.1016/0967-0637(96)00040-4
Du, T., Tseng, Y.-H., & Yan, X.-H. (2008). Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait. Journal of Geophysical Research, 113(C8). doi:10.1029/2007jc004294
Durham, W. M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M., & Stocker, R. (2013). Turbulence drives microscale patches of motile phytoplankton. Nature Communications, 4, 2148. doi:10.1038/ncomms3148
Estrada, M., Alcaraz, M., & Marrase, C. (1987). Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms. Marine Ecology Progress Series, 38, 267-281. doi: 10.3354/meps038267
Estrada, M., & Berdalet, E. (1997). Phytoplankton in a turbulent world. Scientia Marina, 61(1), 125-140. doi:10.3989/scimar.04520.06D
Evans, M. A., MacIntyre, S., & Kling, G. W. (2008). Internal wave effects on photosynthesis: Experiments, theory, and modeling. Limnology and Oceanography, 53(1), 339-353.
Finnigan, T. D., Luther, D. S., & Lukas, R. (2002). Observations of enhanced diapycnal mixing near the Hawaiian Ridge. Journal of Physical Oceanography, 32, 2988-3002. doi:10.1175/1520-0485(2002)032<2988:OOEDMN>2.0.CO;2
Flierl, G. R., & Davis, C. S. (1993). Biological effects of Gulf Stream meandering. Journal of Marine Research, 51, 529-560.
Fock, H. O., & Zidowitz, H. (2004). Episodic recruitment to seamount populations: evidence from Zenopsis conchifer (Lowe, 1852) at the Great Meteor Seamount (Subtropical North-east Atlantic). Archive of Fishery and Marine Research, 51(1), 287-293.
Galbraith, P. S., & Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology, 13, 688-702.
Gasol, J. M., del Gorgio, P. A., & Duarte, C. M. (1997). Biomass distribution in marine planktonic communities. Limnol. Oceanogr., 42(6), 1353-1363. doi:10.4319/lo.1997.42.6.1353
Genin, A. (2004). Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. Journal of Marine Systems, 50(1-2), 3-20. doi:10.1016/j.jmarsys.2003.10.008
Genin, A., & Boehlert, G. W. (1985). Dynamics of temperature and chlorophyll structures above a seamount: An oceanic experiment. Journal of Marine Research, 43, 907-924. doi:10.1357/002224085788453868
Genin, A., Greene, C., Haury, L., Wiebe, P., Gal, G., Kaartvedt, S., . . . Dawson, J. (1994). Zooplankton patch dyamics: daily gap formation over abrupt topography. Deep Sea Research 1, 41(5/6), 941-951. doi:10.1016/0967-0637(94)90085-X
Geyer, W. R., Lavery, A. C., Scully, M. E., & Trowbridge, J. H. (2010). Mixing by shear instability at high reynolds number. Geophysical Research Letters, 37(22), n/a-n/a. doi:10.1029/2010gl045272
Glibert, P. M. (2016). Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae, 55, 25-30. doi:10.1016/j.hal.2016.01.008
Gong, G.-C., Wen, Y.-H., Wang, B.-W., & Liu, G.-J. (2003). Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7), 1219-1236. doi:10.1016/s0967-0645(03)00019-5
Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J. B., . . . Prejger, F. (2010). Digital zooplankton image analysis using the ZooScan integrated system. Journal of Plankton Research, 32(3), 285-303. doi:10.1093/plankt/fbp124
Goswami, S. C. (2004). Zooplankton Methodology, Collection & Identification – a field Manual.
Guo, X. Y., Zhu, X. H., Long, Y., & Huang, D. J. (2013). Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosciences, 10(10), 6403-6417. doi:10.5194/bg-10-6403-2013
Harris, S. A., Noyon, M., Marsac, F., Vianello, P., & Roberts, M. J. (2020). Ichthyoplankton assemblages at three shallow seamounts in the South West Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 176. doi:10.1016/j.dsr2.2020.104809
Hasegawa, D., Matsuno, T., Tsutsumi, E., Senjyu, T., Endoh, T., Tanaka, T., . . . Guo, X. (2021). How a Small Reef in the Kuroshio Cultivates the Ocean. Geophysical Research Letters, 48(7). doi:10.1029/2020gl092063
Haury, L., Fey, C., Gal, G., Hobday, A., & Genin, A. (1995). Copepod carcasses in the ocean. I. Over seamounts. Mar. Ecol. Prog. Ser., 123, 57-63.
Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. Journal of Fluid Mechanics, 51(1), 39-61. doi:10.1017/S0022112072001065
Hebert, D., Moum, J. N., Paulson, C. A., & Caldwell, D. R. (1992). Turbulence and internal waves at the equator. Part II: Details of a single event. Journal of Physical Oceanography, 22, 1346-1356. doi:10.1175/1520-0485(1992)022<1346:TAIWAT>2.0.CO;2
Howard, L. N. (1961). Note on a paper of John W. Miles J. Fluid Mech., 10(4), 509-512. doi:10.1017/S0022112061000317
Hsiao, S.-H., Kâ, S., Fang, T.-H., & Hwang, J.-S. (2011). Zooplankton assemblages as indicators of seasonal changes in water masses in the boundary waters between the East China Sea and the Taiwan Strait. Hydrobiologia, 666(1), 317-330. doi:10.1007/s10750-011-0628-1
Hsieh, H.-Y., & Lo, W.-T. (2019). Mesoscale distribution and assemblage structure of fish larvae in the Kuroshio waters off eastern Taiwan. Marine Biodiversity, 49(4), 1971-1986. doi:10.1007/s12526-019-00958-8
Hsieh, H. Y., Lo, W. T., Liu, D. C., & Su, W. C. (2010). Influence of hydrographic features on larval fish distribution during the south-westerly monsoon in the waters of Taiwan, western North Pacific Ocean. J Fish Biol, 76(10), 2521-2539. doi:10.1111/j.1095-8649.2010.02643.x
Hsieh, R. J., Hsieh, H. Y., & Lo, W. T. (2016). Succession of Monsoons and Water Mass Influences on Euphausiid Assemblages in the Waters Around Taiwan, Western North Pacific Ocean. Zool Stud, 55, e46. doi:10.6620/ZS.2016.55-46
Hsu, P. C., Lin, C. C., Huang, S. J., & Ho, C. R. (2016). Effects of cold eddy on Kuroshio Meander and its suface poperties, East of Taiwan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11), 5055-5063. doi:10.1109/jstars.2016.2524698
Hsueh, Y. (2000). The Kuroshio in the East China Sea. Journal of Marine Systems, 24, 131-139.
Hwang, J.-S., Dahms, H.-U., Tseng, L.-C., & Chen, Q.-C. (2007). Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. Journal of Experimental Marine Biology and Ecology, 352(1), 12-27. doi:10.1016/j.jembe.2007.06.034
Jan, S., Yang, Y. J., Wang, J., Mensah, V., Kuo, T. H., Chiou, M. D., . . . Chien, H. (2015). Large variability of the Kuroshio at 23.75°N east of Taiwan. Journal of Geophysical Research: Oceans, 120(3), 1825-1840. doi:10.1002/2014jc010614
Jiao, N., Yang, Y., Koshikawa, H., & Watanabe, M. (2002). Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquat Microb Ecol, 30, 37-48. doi:10.3354/ame030037
Ju, Y. R., Lo, W. T., Chen, C. F., Chen, C. W., Huang, Z. L., & Dong, C. D. (2019). Effect of metals on zooplankton abundance and distribution in the coast of southwestern Taiwan. Environ Sci Pollut Res Int, 26(33), 33722-33731. doi:10.1007/s11356-018-2169-x
Kâ, S., & Hwang, J. S. (2011). Mesozooplankton distribution and composition on the northeastern coast of Taiwan during autumn: effects of the Kuroshio Current and Hydrothermal Vents. Zoological Studies, 50(2), 155-163.
Kaneko, H., Yasuda, I., Komatsu, K., & Itoh, S. (2013). Observations of vertical turbulent nitrate flux across the Kuroshio. Geophysical Research Letters, 40(12), 3123-3127. doi:10.1002/grl.50613
Kasai, A., Kimura, S., Nakata, H., & Okazaki, Y. (2002). Entrainment of coastal water into a frontal eddy of the Kuroshio and its biological significance. Journal of Marine Systems, 37, 185-198.
Kelly, K. A., Small, R. J., Samelson, R. M., Qiu, B., Joyce, T. M., Kwon, Y. O., & Cronin, M. F. (2010). Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21), 5644-5667. doi:10.1175/2010jcli3346.1
Knap, A. H., Michaels, A. F., Steinberg, D. K., Bahr, F., Bates, N. R., Bell, S., . . . Stone, S. (1997). BATS Methods Manual. Woods Hole, MA, US: JGOFS Planning Office
Kobari, T., Honma, T., Hasegawa, D., Yoshie, N., Tsutsumi, E., Matsuno, T., . . . Nakamura, H. (2020). Phytoplankton growth and consumption by microzooplankton stimulated by turbulent nitrate flux suggest rapid trophic transfer in the oligotrophic Kuroshio. Biogeosciences, 17(9), 2441-2452. doi:10.5194/bg-17-2441-2020
Koslow, J. A. (1996). Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. Journal of Fish Biology, 49, 54-74.
Kwon, Y.-O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B., & Thompson, L. A. (2010). Role of the Gulf Stream and Kuroshio–Oyashio Systems in large-scale atmosphere–ocean interaction: a review. Journal of Climate, 23(12), 3249-3281. doi:10.1175/2010jcli3343.1
Lai, C.-C., Wu, C.-R., Chuang, C.-Y., Tai, J.-H., Lee, K.-Y., Kuo, H.-Y., & Shiah, F.-K. (2021). Phytoplankton and Bacterial Responses to Monsoon-Driven Water Masses Mixing in the Kuroshio Off the East Coast of Taiwan. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.707807
Lee, S., & Fuhrman, J. (1987). Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53(6), 1298-1303.
Lee, T., Yoder, J., & Atkinson, L. (1991). Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. Journal of Geophysical Research, 96(C12). doi:10.1029/91jc02450
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., & Davis, C. (2007). Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research, 112(C3). doi:10.1029/2006jc003802
Leis, J. M., & Carson-Ewart, B. M. (2000). The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae (Fauna Malesiana Handbook 2 ed.): Brill. 850 p.
Li, H., & Yamazaki, H. (2001). Observations of a Kelvin-Helmholtz billow in the ocean. Journal of Oceanography, 57, 709-721.
Li, L., Nowlin, W. J. D., & Jilan, S. (1998). Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research I, 45, 1469-1482. doi:10.1016/S0967-0637(98)00026-0
Liang, W.-D., Yang, Y. J., Tang, T. Y., & Chuang, W.-S. (2008). Kuroshio in the Luzon Strait. Journal of Geophysical Research, 113(C8). doi:10.1029/2007jc004609
Linacre, L., Durazo, R., Camacho‐Ibar, V. F., Selph, K. E., Lara‐Lara, J. R., Mirabal‐Gómez, U., . . . Sidón‐Ceseña, K. (2019). Picoplankton carbon biomass assessments and distribution of Prochlorococcus ecotypes linked to loop current eddies during summer in the southern Gulf of Mexico. Journal of Geophysical Research: Oceans, 124, 8342–8359. doi:10.1029/2019JC015103
Liu, K.-M., Cheng, Y.-T., Chen, W.-K., Chen, C.-T., & Su, W.-C. (2008). Examining the density-dependent effect on the growth of dolphinfish, Corphaena hippurus in the Eastern Taiwan waters. Journal of The Fisheries Society of Taiwan, 35(1), 35(1), 101-115. doi:10.29822/JFST.200803.0008
Liu, K., Suzuki, K., Chen, B., & Liu, H. (2020). Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnology and Oceanography, 66(3), 639-651. doi:10.1002/lno.11629
Maar, M., Nielsen, T. G., Stips, A., & Visser, A. W. (2003). Microscale distribution of zooplankton in relation to turbulent diffusion. Limnol. Oceanogr., 48(3), 1312-1325. doi:10.4319/lo.2003.48.3.1312
Mackas, D. L., & Boyd, C. M. (1979). Spectral analysis of zooplankton spatial heterogeneity. Science, 204(4388), 62-64. doi:10.1126/science.204.4388.62
Madigan, D. J., Chiang, W. C., Wallsgrove, N. J., Popp, B. N., Kitagawa, T., Choy, C. A., . . . Sun, C. (2016). Intrinsic tracers reveal recent foraging ecology of giant Pacific bluefin tuna at their primary spawning grounds. Marine Ecology Progress Series, 553, 253-266. doi:10.3354/meps11782
Margalef, R. (1979). Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. Toxic dinoflagellate blooms, 89-94.
Martin, B., & Christiansen, B. (2009). Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 56(25), 2671-2682. doi:10.1016/j.dsr2.2008.12.026
Matarese, A. C., Arthur W. Kendall, J., Blood, D. M., & Vinter, B. M. (1989). Laboratory guide to early life history stages of Northeast Pacific fishes. NOAA Tech. . Retrieved from USA:
Matsuno, T., Hibiya, T., Kanari, S., & Kobayashi, C. T. (1997). Small scale internal waves and turbulent fluctuations near the continental shelf break in the East China Sea. Journal of Oceanography, 53, 256-269.
Meincke, J. (1971). Observation of an anticyclonic vortex trapped above a seamount. Journal of Geophysical Research, 76(30), 7432-7440. doi:10.1029/JC076i030p07432
Mendonca, A., Aristegui, J., Vilas, J. C., Montero, M. F., Ojeda, A., Espino, M., & Martins, A. (2012). Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo seamounts (northeast Atlantic). PLoS One, 7(1). doi:10.1371/journal.pone.0029526
Mensah, V., Jan, S., Chiou, M. D., Kuo, T. H., & Lien, R. C. (2014). Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep Sea Research Part I: Oceanographic Research Papers, 86, 68-81. doi:10.1016/j.dsr.2014.01.005
Miles, J. (1961a). On the stability of heterogeneous shear flows. Journal of Fluid Mechanics, 10(4), 496-508. doi:10.1017/S0022112061000305
Miles, J. W. (1961b). On the stability of heterogeneous shear flows. J. Fluid Mech., 10(4), 496-508. doi:10.1017/S0022112061000305
Mohn, C., & Beckmann, A. (2002). The upper ocean circulation at Great Meteor Seamount. Ocean Dynamics, 52(4), 179-193. doi:10.1007/s10236-002-0017-4
Morato, T., Varkey, D. A., Damaso, C., Machete, M., Santos, M., Prieto, R., . . . Santos, R. S. (2008). Evidence of a seamount effect on aggregating visitors. Mar. Ecol. Prog. Ser., 357, 23-32. doi:10.3354/meps07269
Motoda, S. (1957). North Pacific standard plankton net. Inform. Bull. Planktol., 4(13-15).
Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., & Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. American Meteorological Society, 33, 2093-2112. doi:10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
Mouriño-Carballido, B., Hojas, E., Cermeño, P., Chouciño, P., Fernández-Castro, B., Latasa, M., . . . Vidal, M. (2016). Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Marine Ecology Progress Series, 543, 1-19. doi:10.3354/meps11558
Nagai, T., Clayton, S., & Uchiyama, Y. (2019a). Multiscale routes to supply nutrients through the Kuroshio nutrient stream. In T. Nagai, H. Saito, K. Suzuki, & M. Takahashi (Eds.), Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics. doi:10.1002/9781119428428.ch6
Nagai, T., Durán, G. S., Otero, D. A., Mori, Y., Yoshie, N., Ohgi, K., . . . Kobari, T. (2019b). How the Kuroshio Current delivers nutrients to sunlit layers on the continental shelves with aid of near-inertial waves and turbulence. Geophysical Research Letters, 46, 6726-6735. doi:10.1029/ 2019GL082680
Nagai, T., Rosales Quintana, G. M., Durán Gómez, G. S., Hashihama, F., & Komatsu, K. (2021). Elevated turbulent and double-diffusive nutrient flux in the Kuroshio over the Izu Ridge and in the Kuroshio Extension. Journal of Oceanography, 77(1), 55-74. doi:10.1007/s10872-020-00582-2
Nan, F., Xue, H., & Yu, F. (2015). Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137, 314-333. doi:10.1016/j.pocean.2014.05.012
Nellen, W. (1974). Investigations on the Distribution of Fish Larvae and Plankton near and above the Great Meteor Seamount. In B. J.H.S. (Ed.), The Early Life History of Fish: Springer, Berlin, Heidelberg.
Neumann Leitão, S., Melo Junior, M. d., Porto Neto, F. d. F., Silva, A. P., Diaz, X. F. G., Silva, T. d. A. e., . . . Schwamborn, R. (2019). Connectivity Between Coastal and Oceanic Zooplankton From Rio Grande do Norte in the Tropical Western Atlantic. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00287
O'Connell, C. P., & Raymond, L. P. (1970). The effect of food density on survival and growth of early post yolk-sac larvae of the northern anchovy (Engraulis mordax Girard) in the laboratory. Journal of Experimental Marine Biology and Ecology, 5(2), 187-197. doi:10.1016/0022-0981(70)90017-1
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . . (2020). vegan:Community Ecology Package. R package. https://CRAN.R-project.org/package=vegan
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. American Meteorological Society, 10, 83-89.
Otero-Ferrer, J. L., Cermeño, P., Bode, A., Fernández-Castro, B., Gasol, J. M., Morán, X. A. G., . . . Mouriño-Carballido, B. (2018). Factors controlling the community structure of picoplankton in contrasting marine environments. Biogeosciences, 15(20), 6199-6220. doi:10.5194/bg-15-6199-2018
Patterson, M. D., Caulfield, C. P., McElwaine, J. N., & Dalziel, S. B. (2006). Time-dependent mixing in stratified Kelvin-Helmholtz billows: Experimental observations. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026949
Perfect, B., Kumar, N., & Riley, J. J. (2020). Energetics of Seamount Wakes. Part I: Energy Exchange. Journal of Physical Oceanography, 50(5), 1365-1382. doi:10.1175/jpo-d-19-0105.1
Pitcher, T. J., Clark, M. R., Morato, T., & Watson, R. (2010). Seamount fisheries:: Do they have a future? Oceanography: Special Issue on Mountains in the Sea, 23(1), 134-144. doi:www.jstor.org/stable/24861075
Pitcher, T. J., Morato, T., Hart, P. J., Clark, M. R., Haggan, N., & Santos, R. S. (2008). Seamounts: ecology, fisheries and conservation: John Wiley & Sons.
Raven, J. A., Finkel, Z. V., & Irwin, A. J. (2005). Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie et Milieu - Life And Environment, 55(3-4), 209-215.
Rogers, A. D. (1994). The Biology of Seamounts Advances in Marine Biology (Vol. 30, pp. 305-350): Elsevier Ltd.
Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M., & Clark, M. R. (2010). Paradigms in seamount ecology: fact, fiction and future. Marine Ecology, 31, 226-241. doi:10.1111/j.1439-0485.2010.00400.x
Saito, H. (2019). The Kuroshio: its recognition, scientific activities and emerging issues. In T. Nagai, H. Saito, K. Suzuki, & M. Takahashi (Eds.), Kuroshio Current, Physical, Biogeochemical and Ecosystem Dynamics (Vol. 1-11). Hoboken: John Wiley & Sons.
Sandstrom, H., & Oakey, N. (1995). Dissipation in internal tides and solitary waves. Journal of Physical Oceanography, 25, 604-614.
Sangra, P., Basterretxea, G., Pelegri, J. L., & Aristegui, J. (2001). Chlorophyll increase due to internal waves on the shelf break of Gran Canaria (Canary Islands). Scientia Marina, 65, 89-97.
Santos, M., Moita, M. T., Bashmachnikov, I., Menezes, G. M., Carmo, V., Loureiro, C. M., . . . Martins, A. (2013). Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography, 98, 52-62. doi:10.1016/j.dsr2.2013.05.037
Sassa, C., Kawaguchi, K., Hirota, Y., & Ishida, M. (2007). Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical–tropical waters of the western North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 54(12), 2181-2193. doi:10.1016/j.dsr.2007.09.006
Sassa, C., Ohshimo, S., Tanaka, H., & Tsukamoto, Y. (2013). Reproductive biology of Benthosema pterotum (Teleostei: Myctophidae) in the shelf region of the East China Sea. Journal of the Marine Biological Association of the United Kingdom, 94(2), 423-433. doi:10.1017/s0025315413001318
Sassa, C., Tanaka, H., & Ohshimo, S. (2016). Comparative reproductive biology of three dominant myctophids of the genus Diaphus on the slope region of the East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 115, 145-158. doi:10.1016/j.dsr.2016.06.005
Sawada, K., & Handa, N. (1998). Variability of the path of the Kuroshio ocean current over the past 25,000 years. Nature, 392, 592-595.
Schmeits, M. J., & Dijkstra, H. A. (2001). Bimodal behavior of the Kuroshio and the Gulf Stream. Journal of Physical Oceanography, 31, 3435-3456.
Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B. U. Ö., Bame, S. J., Forbes, T. G., . . . Russell, C. T. (1981). Structure of the low-latitude boundary layer. Journal of Geophysical Research, 86(A4), 2099-2110. doi:10.1029/JA086iA04p02099
Serra, T., Granata, T., Colomer, J., Stips, A., Møhlenberg, F., & Casamitjana, X. (2003). The role of advection and turbulent mixing in the vertical distribution of phytoplankton. Estuarine, Coastal and Shelf Science, 56(1), 53-62. doi:10.1016/s0272-7714(02)00120-8
Shroyer, E. L. (2012). Turbulent kinetic energy dissipation in Barrow Canyon. Journal of Physical Oceanography, 42(6), 1012-1021. doi:10.1175/jpo-d-11-0184.1
Sibert, J., Holland, K., & Itano, D. (2000). Exchange rates of yellowfin and bigeye tunas and fishery interaction between Cross seamount and near-shore FADs in Hawaii. Aquat. Living Resour., 13 225-232. doi:10.1016/S0990-7440(00)01057-3
Simek, K., Hartman, P., Nedoma, J., Pernthaler, J., Springmann, D., Vrba, J., & Psenner, R. (1997). Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat Microb Ecol, 12, 49-63. doi:10.3354/ame012049
Smith, D. (1977). A guide to marine coastal plankton and marine invertebrate larvae. U.S.A.: Kendall/Hunt.
Smyth, W. D., & Moum, J. N. (2000). Length scales of turbulence in stably stratified mixing layers. Physics of Fluids, 12(6), 1327-1342. doi:10.1063/1.870385
Smyth, W. D., & Moum, J. N. (2012). Ocean Mixing by Kelvin-Helmholtz Instability. Oceanography, 25(2), 140-149. doi:10.2307/24861351
Smyth, W. D., Moum, J. N., & Caldwell, D. R. (2001). The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. Journal of Physical Oceanography, 31, 1969-1992. doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
Sohrin, R., Isaji, M., Obara, Y., Agostini, S., Suzuki, Y., Hiroe, Y., . . . Hidaka, K. (2011). Distribution of Synechococcus in the dark ocean. Aquatic Microbial Ecology, 64(1), 1-14. doi:10.3354/ame01508
Spall, M. A. (1996). Dynamics of the Gulf Stream/Deep Western Boandary Current Crossover. Part II: Low Frequency Internal Oscillations. Journal of Physical Oceanography, 26, 2169-2182.
Su, W. C., Lo, W. T., Liu, D. C., Wu, L. J., & Hsieh, H. Y. (2011). Larval fish assemblages in the Kuroshio waters east of Taiwan during two distinct monsoon seasons. Bulletin of Marine Science, 87(1), 13-29. doi:10.5343/bms.2010.1010
Tanaka, T., Hasegawa, D., Yasuda, I., Tsuji, H., Fujio, S., Goto, Y., & Nishioka, J. (2019). Enhanced vertical turbulent nitrate flux in the Kuroshio across the Izu Ridge. Journal of Oceanography, 75(2), 195-203. doi:10.1007/s10872-018-0500-2
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philos. Trans. R. Soc. London, 286(1334), 125-181.
Tsai, C. J., Andres, M., Jan, S., Mensah, V., Sanford, T. B., Lien, R. C., & Lee, C. M. (2015). Eddy‐Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 42(19), 8098-8105. doi:10.1002/2015gl065814
Tseng, L.-C., Dahms, H.-U., Hung, J.-J., Chen, Q.-C., & Hwang, J.-S. (2011). Can different mesh sizes affect the results of copepod community studies? Journal of Experimental Marine Biology and Ecology, 398(1-2), 47-55. doi:10.1016/j.jembe.2010.12.007
Tsutsumi, E., Matsuno, T., Itoh, S., Zhang, J., Senjyu, T., Sakai, A., . . . Villanoy, C. (2020). Vertical fluxes of nutrients enhanced by strong turbulence and phytoplankton bloom around the ocean ridge in the Luzon Strait. Sci Rep, 10(1), 17879. doi:10.1038/s41598-020-74938-5
Tsutsumi, E., Matsuno, T., Lien, R. C., Nakamura, H., Senjyu, T., & Guo, X. (2017). Turbulent mixing within the Kuroshio in the Tokara Strait. Journal of Geophysical Research: Oceans, 122(9), 7082-7094. doi:10.1002/2017jc013049
Uchida, R. N., Hayasi, S., & Boehlert, G. W. (1986). Environment and resources of seamounts in the North Pacific: Proceedings of a workshop, March 21-23, 1984, Shimizu, Japan.
van Haren, H., Hanz, U., de Stigter, H., Mienis, F., & Duineveld, G. (2017). Internal wave turbulence at a biologically rich Mid-Atlantic seamount. PLoS One, 12(12), e0189720. doi:10.1371/journal.pone.0189720
Vaulot, D., Courties, C., & Partensky, F. (1989). A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry, 10, 629-635.
White, J. W., Carr, M. H., Caselle, J. E., Washburn, L., Woodson, C. B., Palumbi, S. R., . . . Milligan, K. (2019). Connectivity, Dispersal, and Recruitment. Oceanography, 32(3), 50-59. doi:https://www.jstor.org/stable/26760082.
White, M., Bashmachnikov, I., Arístegui, J., & Martins, A. (2007). Physical processes and seamount productivity. In T. J. Pitcher, T. Morato, P. J. B. Hart, M. R. Clark, N. Haggan, & R. S. Santos (Eds.), Seamounts: ecology, fisheries and conservation (pp. 65-84).
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org
Wiebe, P. H., Morton, A. W., Bradley, A. M., Backus, R. H., Craddock, J. E., Barber, V., . . . Flierl, G. R. (1985). New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Marine Biology, 87, 313-323.
Woods, J., & Wiley, R. (1972). Billow turbulence and ocean microstructure. Deep Sea Research and Oceanographic Abstracts, 19(2), 87-121. doi:10.1016/0011-7471(72)90043-5
Yang, D., Yin, B., Chai, F., Feng, X., Xue, H., Gao, G., & Yu, F. (2018). The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation. Progress in Oceanography, 167, 97-115. doi:10.1016/j.pocean.2018.08.004
Zhang, W.-Z., Wang, H., Chai, F., & Qiu1, G. (2016). Physical drivers of chlorophyll variability in the open South China Sea. Journal of Geophysical Research, 121, 7123–7140. doi:10.1002/ 2016JC011983